

M.Eng. René Schwarz

DEVELOPMENT OF AN ILLUMINATION SIMULATION SOFTWARE
FOR THE MOON’S SURFACE

An approach to illumination direction estimation on pictures of solid
planetary surfaces with a significant number of craters.

BASED UPON
THE ORIGINAL EXAMINATION VERSION

Cover Images
– Moon photograph: S103-E-5037 (December 21, 1999) — Astronauts aboard the Space Shule Discovery recorded

this rarely seen phenomenon of the full Moon partially obscured by the atmosphere of Earth. e image was
recorded with an electronic still camera at 15:15:15 GMT, Dec. 21, 1999. © NASA, available at http://spaceflight.
nasa.gov/gallery/images/shuttle/sts-103/html/s103e5037.html.

– Moon surface tile: Simulated map of safe landing areas around a large lunar crater. © NASA/Goddard Scientific
Visualization Studio, available at http://www.nasa.gov/images/content/271355main_safeonly_print_jpg.jpg.

http://spaceflight.nasa.gov/gallery/images/shuttle/sts-103/html/s103e5037.html
http://spaceflight.nasa.gov/gallery/images/shuttle/sts-103/html/s103e5037.html
http://www.nasa.gov/images/content/271355main_safeonly_print_jpg.jpg

Meinen Großeltern,

RosaMaria und Konrad Siermann,
Gerda Schwarz

&
meinen Eltern,

Angela und Sven Schwarz,

die mich mein Leben lang nach Kräդen in meinen Bestrebungen unterstützt haben.

DEVELOPMENT OF AN ILLUMINATION SIMULATION
SOFTWARE FOR THE MOON’S SURFACE

An approach to illumination direction estimation on pictures of
solid planetary surfaces with a significant number of craters.

— Master’s esis —

BY
Mr. B.Eng. René Schwarz (Matriculation Number 17288)

né Siermann, born on April 15th, 1987 in Merseburg, Germany

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE AND COMMUNICATION
SYSTEMS AND THE INSTITUTE OF SPACE SYSTEMS (GERMAN AEROSPACE CENTER,

DLR) IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING (M.ENG.)
IN COMPUTER SCIENCE/ARTIFICIAL INTELLIGENCE

AT THE
MERSEBURG UNIVERSITY OF APPLIED SCIENCES

ON THIS 9TH DAY OF APRIL, 2012.

S U P E R V I S O R S

GERMAN AEROSPACE CENTER (DLR) MERSEBURG UNIVERSITY OF APPLIED SCIENCES
Institute of Space Systems Department of Computer Science

and Communication Systems

Dipl. Math.-Techn. Bolko Maass Prof. Dr. rer. nat. Hartmut Kröner

ENTWICKLUNG EINER SOFTWARE ZUR SIMULATION
DER OBERFLÄCHENBELEUCHTUNG DES MONDES

Ein Zugangsweg zur Schätzung der Beleuchtungsrichtung auf Bildern
planetarer Oberflächen mit einer signifikanten Anzahl von Kratern.

— Masterthesis —

VON
Herrn B.Eng. René Schwarz (Matr.-Nr. 17288)

geb. Siermann, geboren am 15. April 1987 in Merseburg

VORGELEGT DEM FACHBEREICH INFORMATIK UND KOMMUNIKATIONSSYSTEME
UND DEM INSTITUT FÜR RAUMFAHRTSYSTEME (DEUTSCHES ZENTRUM FÜR LUFT-
UND RAUMFAHRT, DLR) ZUR ERLANGUNG DES AKADEMISCHEN GRADES EINES

MASTER OF ENGINEERING (M.ENG.)
IN INFORMATIK/KÜNSTLICHE INTELLIGENZ

AN DER
HOCHSCHULE MERSEBURG

AM 09. APRIL 2012.

M E N T O R E N

DEUTSCHES ZENTRUM HOCHSCHULE MERSEBURG
FÜR LUFT- UND RAUMFAHRT (DLR) Fachbereich Informatik und Kommunikationssysteme
Institut ür Raumfahrtsysteme

Dipl. Math.-Techn. Bolko Maass Prof. Dr. rer. nat. Hartmut Kröner

M.Eng. René Schwarz
Merseburg University of Applied Sciences
German Aerospace Center (DLR), Institute of Space Systems, Bremen

e-mail: mail@rene-schwarz.com · web: http://www.rene-schwarz.com

Citation Proposal

Schwarz, René: Development of an illumination simulation soware for the Moon’s surface: An approach to illumination
direction estimation on pictures of solid planetary surfaces with a significant number of craters. Master’s esis, Merse-
burg University of Applied Sciences, German Aerospace Center (DLR). Books on Demand, Norderstedt, Germany,
2012. ISBN 978-3-8482-1628-4.

BibTeX entry: 1 @book{schwarz-rene-2012-illumination,
2 author = {Schwarz, Ren\’e},
3 title = {Development of an illumination simulation software for the Moon’s surface:
4 An approach to illumination direction estimation on pictures of solid planetary
5 surfaces with a significant number of craters},
6 publisher = {Books on Demand, Norderstedt, Germany},
7 note = {Master’s Thesis, Merseburg University of Applied Sciences,
8 German Aerospace Center (DLR)},
9 year = {2012},
10 isbn = {978-3-8482-1628-4},
11 url = {http://go.rene-schwarz.com/masters-thesis}
12 }

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bib-
liografische Daten sind im Internet über http://dnb.d-nb.de abruar.

Copyright ©2012 M.Eng. René Schwarz (rene-schwarz.com), unless otherwise stated.

is book is subject to the conditions of the Creative Commons Aribution-NonCommercial 3.0 Unported License
(CC BY-NC 3.0); it can be obtained in a digital version (free of charge) as well as in form of a printed paperback copy.
Please aribute/cite this work in the way specified above. If you want to use this book or parts of it for commercial
purposes, please contact the author via e-mail.

Any trademarks, service marks, product names or named features are assumed to be the property of their respective
owners; they are used throughout this book in an editorial fashion only. ere is no implied endorsement/relationship.

Although the author has used his best efforts in preparing this book, he assumes no responsibility for errors or omis-
sions, especially the information is represented here without any warranty; without even the implied warranty of
merchantability or fitness for a particular purpose. Other licenses can apply for some contents; especially source code
wrien by the author is released subject to the conditions of the GNU General Public License (GPL), version 2 or later,
unless otherwise stated.

Document Preparation and Layout: M.Eng. René Schwarz
Illustrations and Artwork: Mahias Kopsch (unless otherwise stated)
Printing and Publishing: BoD — Books on Demand GmbH, Norderstedt.
Printed in Germany. Typeset using XƎLATEX as part of the MiKTEX TEX distribution.

Digital version (PDF): http://go.rene-schwarz.com/masters-thesis
Paperback copy ISBN: 978-3-8482-1628-4

mailto:mail@rene-schwarz.com
http://www.rene-schwarz.com
http://dnb.d-nb.de
http://www.rene-schwarz.com
http://go.rene-schwarz.com/masters-thesis

Abstract

e exploration of the solar system over the last decades has broadened our knowledge and
understanding of the universe and our place in it. Great scientific and technological achieve-
ments have been made, allowing us to study faraway places in the solar system. e world’s
space agencies are now facing a new era of continuing space exploration in the 21st century,
expanding permanent human presence beyond low Earth orbit for the first time. To pursue
this goal, the development of advanced technologies is more urgent than ever before.

One key technology for future human and robotic missions to places distant from Earth
will be a system for autonomous navigation and landing of spacecra, since nowadays naviga-
tion systems rely on Earth-based navigation techniques (tracking, trajectory modeling, com-
manding). A promising approach involves optical navigation technologies, which can operate
completely independently of Earth-based support, allowing a surface-relative navigation and
landing on celestial bodies without human intervention.

e German Aerospace Center (DLR) is developing a new, holistic optical navigation system
for all stages of an approach and landing procedure within the ATON project (Autonomous
Terrain-based Optical Navigation). e central feature of this new navigation system is its
landmark-based navigation. Commonly, craters are used as landmarks, as they exhibit very
characteristic shapes and they are stable over the long term with respect to shape, structure
and positioning. However, the flawless perception of these surface features by computers is a
non-trivial task.

A new edge-free, scale-, pose- and illumination-invariant crater detection algorithm is de-
veloped for ATON, which will do away with the limitations of current algorithms. To promote
further development, the possibility of generating realistic surface images of celestial bodies
with a significant number of craters and with well-known local illumination conditions is es-
sential, as well as a technique for estimating the local illumination direction on these images.
To date, no soware exists to generate artificial renderings of realistically illuminated planetary
surfaces while determining the local solar illumination direction.

Having said this, the objective of this thesis is the development of a surface illumination sim-
ulation soware for solid planetary surfaces with a significant number of craters, whereas all
work has been done in the context of the Moon. e thesis work has led to the development
of the Moon Surface Illumination Simulation Framework (MSISF), which is the first soware
known to produce realistic renderings of the entire Moon’s surface from virtually every view-

point, while simultaneously generating machine-readable information regarding the exactly
known parameters for the environmental conditions, such as the local solar illumination angle
for every pixel of a rendering showing a point on the Moon’s surface.

To produce its renderings, theMSISF maintains a global digital elevation model (DEM) of the
Moon, using the latest data sets from the ongoing NASA Lunar Reconnaissance Orbiter (LRO)
mission. eMSISF has also demonstrated its ability to not only produce single renderings, but
also whole series of renderings corresponding to a virtual flight trajectory or landing on the
Moon. is thesis shows how these renderings will be produced and how they will be suitable
for the development and testing of new optical navigation algorithms. e MSISF can also be
modified for the rendering of other celestial bodies.

With the MSISF, a basis has been established for the further development of the new DLR
crater detection algorithm as well as for the illuminance flow estimation on pictures of solid
planetary surfaces.

Keywords: Moon, 3D Model, 3D Rendering, Illumination Simulation, Illumination
Direction Estimation, Illuminance Flow Estimation, Local Solar Illumination
Angle, Terrain-Relative Navigation, Optical Navigation, Digital Elevation
Model, Digital Terrain Model, Digital Surface Model, Delaunay Triangulation,
Crater Detection, Topography, MySQL Spatial Database, Surface Paern, Ray
Tracing, Dynamical Surface Paern Selection Algorithm, Moon Surface
Illumination Simulation Framework, MSISF, C#, PHP, XML, SPICE, NASA, DLR

Abstract (Deutsch)

Die Erkundung unseres Sonnensystems in den vergangenen Jahrzehnten erweiterte unser
Wissen und Verständnis des Universums und von unserem Platz darin; großartige wissen-
schaliche und technische Errungenschaen gestaen uns das Studium weit entfernter Orte
im Sonnensystem. Weltweit sehen Raumfahrtagenturen nun einer neuen Ära der Erforschung
des Sonnensystems im 21. Jahrhundert entgegen, in der die menschliche Präzenz im Weltall
erstmals dauerha außerhalb eines niedrigen Erdorbits ausgeweitet werden soll. Um dieses
Ziel erfolgreich verfolgen zu können, drängt die Entwicklung neuer Technologien mehr als je
zuvor.

Eine Schlüsseltechnologie ür künige bemannte und unbemannte Missionen zu weit von
der Erde entfernten Zielen wird die Fähigkeit zur autonomen, sicheren Navigation und Lan-
dung von Raumfahrzeugen sein, da momentane Navigationssysteme auf erdgebundenen Tech-
niken (Bahnverfolgung und -modellierung, Steuerung) basieren. Ein vielversprechender An-
satz dazu sind optische Navigationstechnologien, die komple unabhängig von der Erde ar-
beiten und damit eine Oberflächen-relative Navigation und Landung ohne menschliches Ein-
greifen erlauben.

Das Deutsche Zentrum ür Lu- und Raumfahrt (DLR) entwickelt derzeit ein neuartiges,
ganzheitliches, optisches Navigationssystem ür alle Phasen der Annäherung an einen Him-
melskörper sowie der anschließenden Landeprozedur innerhalb des ATON-Projekts (Autono-
mous Terrain-based Optical Navigation). Den Kern dieses neuen Navigationssystems bildet
die Navigation anhand vonOrientierungspunkten auf Himmelskörpern. Üblicherweisewerden
Krater als solche Orientierungspunkte verwendet, da sie charakteristische Merkmale aufwei-
sen, die langzeitstabil in Bezug auf Form, Struktur und Anordnung sind. Nichtsdestotrotz bleibt
die reibungslose Kratererkennung durch Computer nach wie vor eine nicht-triviale Aufgabe.

Für ATONwird zudemmomentan ein Algorithmus zur Kratererkennung entwickelt, der oh-
ne Kantenerkennung auskommt sowie unabhängig von Skalierung, Blick- und Beleuchtungs-
winkel ist und somit die Beschränkungen der derzeitigen Verfahren durchbricht. Für die weite-
re Entwicklung ist eine Möglichkeit zur Erzeugung von realistischen Bildern (sogenannte Ren-
derings) von Himmelskörpern mit einer signifikanten Anzahl von Kratern, zu denen die lokale
Beleuchtungsrichtung bekannt ist, maßgeblich, ebenso wie die Entwicklung von geeigneten
Verfahren, mit denen eine Schätzung der lokalen Beleuchtungsrichtung auf solchen Bildern
ermöglicht wird. Bislang ist jedoch keine Soware bekannt, die in der Lage ist, derartige Bilder

unter direkter Angabe der lokalen Beleuchtungsrichtung zu erzeugen.
Daher ist die Hauptaufgabe dieseresis die Entwicklung einer Soware zur Simulation der

Beleuchtung fester, planetarer Oberflächen mit einer signifikanten Anzahl von Kratern, wobei
die gesamte Arbeit im Kontext des Erdmondes als Vertreter dieser Klasse von Himmelskörpern
ausgeührt worden ist. Die praktischen Arbeiten im Rahmen der esis ührten zur Entwick-
lung des Moon Surface Illumination Simulation Framework (MSISF), welches die derzeit ers-
te Soware darstellt, die realistische Renderings der gesamten Mondoberfläche von praktisch
jedem Beobachtungsort im Orbit des Mondes erzeugen kann und dabei gleichzeitig compu-
terlesbare Metadaten zu den exakten Umgebungsbedingungen erzeugt, wie zum Beispiel den
lokalen Beleuchtungswinkel der Sonne ür jeden Pixel eines erzeugten Bildes, der einen Punkt
der Mondoberfläche darstellt.

Um realistische Renderings erzeugen zu können, bedient sich das MSISF an einem globalen,
digitalen Oberflächenmodell des Mondes, das auf den neuesten Datensätzen der laufenden Lu-
nar Reconnaissance Orbiter (LRO) Mission der NASA basiert. Im Laufe der Arbeit zeigte sich
zudem, dass das MSISF nicht nur einzelne Bilder, sondern ganze Bildfolgen einer kompleen
virtuellen Flugbahn oder Landung auf dem Mond effizient erzeugen kann.

Mit dem MSISF wurde sowohl ein Grundstein ür die weitere Entwicklung des neuen Kra-
tererkennungsalgorithmus des DLR gelegt, als auch ür weitere Arbeiten auf dem Gebiet der
Schätzung der lokalen Beleuchtungsrichtung auf Bildern fester, planetarer Oberflächen.

Keywords: Mond, 3D-Modell, 3D-Rendering, Beleuchtungssimulation, Schätzung der
Beleuchtungsrichtung, Oberflächen-relative Navigation, Optische Navigation,
Digitales Geländemodell, Digitales Oberflächenmodel,
Delaunay-Triangulation, Kratererkennung, Topografie, MySQL Spatial
Extensions, Surface Paern, Raytracing, dynamische Paernauswahl, lokaler
Beleuchtungswinkel, lokale Beleuchtungsrichtung, Moon Surface Illumination
Simulation Framework, MSISF, C#, PHP, XML, SPICE, NASA, DLR

Table of Contents

Preface 1

List of Abbreviations 3

Notation Overview 7

1 Thesis Background and Scope 13
1.1 Future Challenges of Space Exploration Missions 13
1.2 Necessity of New Navigation Technologies . 16
1.3 Ambitions of the German Aerospace Center (DLR) 17
1.4 esis’ Contribution to Novel Navigation Systems 24

2 Introducing the Moon Surface Illumination Simulation Framework (MSISF) 29
2.1 General Concept . 29
2.2 Development Milestones . 30

2.2.1 Reference Frame and Selenographic Coordinates 30
2.2.2 Lunar Topography Data Acquisition 32
2.2.3 Database Creation, Data Import and Conditioning 32
2.2.4 Surface Paern Generation . 32
2.2.5 Surface Paern Selection, Assembling and Rendering 33
2.2.6 Output of the Local Solar Illumination Angle 33
2.2.7 Result Discussion . 33

2.3 Preparatory Remarks . 34
2.3.1 Soware and Programming Languages Used, Development Environment 34
2.3.2 MSIS User Interface, Definition of Inputs and Outputs 36
2.3.3 MSISF File System Layout . 37
2.3.4 MSISF Deployment and Installation . 38

3 Theoretical Foundations 39
3.1 e Mean Earth/Polar Axis Reference Frame 39
3.2 Derivation of a Spherical Coordinate System for the Moon 40

4 Creating a Global Lunar Topographic Database 45
4.1 Overview of Available Lunar Topographic Data 45
4.2 Data from NASA’s Lunar Orbiter Laser Altimeter (LOLA) 47
4.3 LOLA Data Import and Conditioning . 51

4.3.1 Overall Concept . 51
4.3.2 MySQL Database Design,ery Optimization and Commitment of the

MySQL Server Configuration to Database Performance 52
4.3.3 Importing the LOLA Data into the MySQL Database 59

5 Surface Paern Generation Process 67
5.1 Anatomy of a Surface Paern . 67
5.2 Surface Paern Generation Process . 72
5.3 Storage of the Surface Paerns and POV-Ray Mesh Compilation 74

6 Moon Surface Illumination Simulator (MSIS) 79
6.1 Soware Architecture . 79
6.2 Selected Components of the MSIS . 81

6.2.1 Determination of the Sun’s Position Using NASA NAIF SPICE 81
6.2.2 Position Calculation Using a Set of Keplerian Orbit Elements 84
6.2.3 State Vector Conversion to Keplerian Elements 87
6.2.4 Time Calculations . 90

6.3 User Interface and MSIS Invocation . 92
6.3.1 General Information . 92
6.3.2 Batch File Operation Mode . 92
6.3.3 Fixed State Operation Mode . 94
6.3.4 Keplerian Elements Operation Mode 94
6.3.5 State Vectors Operation Mode . 94

6.4 Example Usage . 94

7 Spacecra Orientation and Rotation Model Using aternions 97
7.1 Introduction to aternions and Spatial Rotation 97
7.2 Spacecra Orientation and Rotation Model . 100

8 Dynamical Surface Paern Selection 103
8.1 Ray Tracing with a Sphere . 104
8.2 Camera Geometry . 105
8.3 MSIS Implementation . 109
8.4 Drawbacks of this Method . 112

9 XML Meta Rendering Information and Rendering Annotations 115
9.1 Definition of the MSIS Output . 115
9.2 Structure of the XML Meta Information File 116
9.3 Determination of the Local Solar Illumination Angle 122

10 Results, Discussion and Conclusion 135
10.1 Synopsis of the Work Results . 135
10.2 Suggestions for Improvements and Future Work 137

10.2.1 Performance Optimization . 137
10.2.2 Improvement of the Topography Database 138
10.2.3 Graphical User Interface . 138
10.2.4 Rendering Parallelization/Distributed Rendering 138
10.2.5 Utilization of the MSISF for Other Celestial Bodies 138
10.2.6 Real-Time Video Preparation . 139
10.2.7 Compile POV-Ray as Windows Command-Line Tool 139
10.2.8 INI Seings . 139
10.2.9 Original Implementation of the 2D Delaunay Triangulation 139
10.2.10 Compensate the Drawbacks of the DSPSA 140

10.3 Construction Progress of TRON . 140
10.4 MSISF Application at DLR . 142

Appendices

A MSIS User Interface Specification 145

B Code Listings 151
B.1 MySQL Server Instance Configuration . 151
B.2 MSISRendering XML Document Type Definition (DTD) 156
B.3 LDEM Import Script . 158
B.4 Paern Generation Script . 165

Bibliography 173
Astrodynamics/Celestial Mechanics . 173
Computer Vision (General) . 175
Illuminance Flow Estimation . 175
Mathematics/Physics in General, Numerical Analysis and Computational Science . 179

Scientific Tables/Conventions, Works of Reference, Algorithms 180
Spacecra Engineering . 181
Other Topics . 181

Listings 187
List of Figures . 187
List of Tables . 190
List of Code Listings . 191

Alphabetical Index 193

Preface

Finally, aer a year of productive and challenging labor, I am grateful for the chance to
publish the results of this fascinating research I have been permied to work on with the joint
support of the Institute of Space Systems of the GermanAerospace Center (DLR) in Bremen and
the Merseburg University of Applied Sciences. During this time, I have gained a deeper insight
into the fields of mathematics, computer graphics and astrodynamics. I have endeavored to
create a thesis that will prove its worth by being of benefit to future research.

is thesis would not have been possible without the outstanding cooperative support of
colleagues, followers, mentors and friends. I would like to give my sincere thanks to my su-
pervisors, Bolko Maass from the Institute of Space Systems of the German Aerospace Center
(DLR) and Professor Hartmut Kröner from the Merseburg University of Applied Sciences, who
gave me the opportunity to work on such an aractive subject and enabled the essential condi-
tions for the creativemental work on it — and, above all things, for their unprecedented support
and their personal and professional counseling throughout the preparation of this thesis.

I would further like to thank my grandparents, parents and especially Mahias Kopsch for
the unconditional succor in areas where only they could be on hand with help and advice.
A special thank you is addressed to Yolande McLean, Canada, for her support in patiently
proofreading all the dras of this thesis.

Additionally, this thesis would not have been possible in the first place without the thou-
sands of people creating, supporting and enhancing the myriad of free and/or open source
soware, namely the Apache HTTPD Webserver, Celestia, doxygen, GIMP, Inkscape, Irfan-
View, FileZilla, Firefox, MediaWiki, MeshLab, MiKTEX (XƎLATEX), MySQL, Notepad++, PHP,
phpMyAdmin, POV-Ray, SPICE, SVN, TeXnicCenter, underbird, TortoiseSVN, VLC, Win-
Merge, yEd and all the ones I have forgoen.

Finally, I would like to thank the National Aeronautics and Space Administration (NASA)
for producing and providing high quality data and services, especially — but not limited to —
regarding the Lunar Reconnaissance Orbiter (LRO) mission.

A Note on the License

I understand knowledge as one essence of human life, and therefore I hold the opinion that
all scientific achievements should be free and accessible for the scientific community and all

1

interested people, ensuring the development of human knowledge regardless of financial or
social circumstances, ethnicity or technological capabilities.

us, permission is hereby granted, free of charge, to use, copy, modify, merge or share
this book subject to the conditions of the Creative Commons Aribution-NonCommercial 3.0
Unported License (CC BY-NC 3.0)1. is book can be obtained in a digital version (PDF) from
http://go.rene-schwarz.com/masters-thesis as well as in the form of a printed paperback copy
(see imprint for ISBN/publisher).

Please note that other licenses may apply for some contents of this book; in particular, all
source code wrien by the author is subject to the conditions of the GNU General Public Li-
cense (GPL), version 2 or later, unless otherwise stated. Material with an external copyright
notice is reproduced here with friendly permission; however, please note that one must ob-
tain a new license for any work derived from this book containing those elements from the
respective copyright owners.

Online Supplemental Material

Additional, supplemental material for this thesis can be found online at http://go.rene-schwarz.
com/masters-thesis, including videos of rendering sequences prepared during the thesis work.
Furthermore, the MSISF (the soware developed during this thesis) will be available for down-
load at this place, along with errata or additional remarks, if applicable. is website will be
extended and revised from time to time.

1 License information: http://creativecommons.org/licenses/by-nc/3.0/; please aribute/cite this work in the way
specified in the imprint, section “citation proposal”. If you want to use this book or parts of it for commercial
purposes, please contact me via e-mail at mail@rene-schwarz.com.

2

http://go.rene-schwarz.com/masters-thesis
http://go.rene-schwarz.com/masters-thesis
http://go.rene-schwarz.com/masters-thesis
http://creativecommons.org/licenses/by-nc/3.0/
mailto:mail@rene-schwarz.com

List of Abbreviations

ACID Atomicity, Consistency, Isolation and Durability, a concept for the reliable
processing of database transactions

ATON Autonomous Terrain-based Optical Navigation, a project by the GNC devision
of the DLR/IRS for the development of a novel optical navigation system

AU Astronomical Unit, a length unit based on the mean distance between Sun
and Earth

Caltech California Institute of Technology, a well-known U.S. university located in
Pasadena, California

COM Center of Mass, a point of a body in space, at which the entire body’s mass
maybe assumed to be concentrated

CPU Central Processing Unit, the main processor of a computer, which is able to
execute programs

CSV Comma-Separated Values, a file format for storing tabular data
CxP Constellation Program, a former NASA program for the human exploration of

Mars, canceled in 2010
DEM Digital Elevation Model, a digital 3D surface model of a celestial body
DLL Dynamic-Link Library, a compiled, shared library to be used in other

applications running on Microso Windows
DLR Deutsches Zentrum ür Lu- und Raumfahrt e. V. (English: German Aerospace

Center), Germany’s space agency
DLR/IRS Institut ür Raumfahrtsysteme (English: Institute of Space Systems), an

institute of the DLR in Bremen, Germany
DOF Degrees of Freedom, the number of independent translations/rotations a

mechanical system can perform
DOI Descent Orbit Injection, an orbital maneuver to bring a spacecra out of a

stable parking orbit in order to achieve an unpowered descent to the surface
of the orbited body

DTD Document Type Definition, a file describing the syntax and semantics of a
XML file

3

DSPSA Dynamical Surface Paern Selection Algorithm, an algorithm developed in
this thesis to dynamically select needed surface paerns for renderings (see
chapter 8)

DSPSE Deep Space Program Science Experiment, the official name of NASA’s
Clementine Mission

ESA European Space Agency, the European intergovernmental organization for
space exploration

ET Ephemeris Time, a system for time measurement oen used in conjunction
with ephemeris

FOV Field of View, an angular measure for the visible area seen from an optical
instrument

FPGA Field-Programmable Gate Array, a re-configurable integrated circuit
GNC Guidance, Navigation and Control, a field of engineering for the development

of systems controlling the movement of spacecra
GNU GNU’s not UNIX, a recursive acronym for a computer operating system
GPL GNU General Public License, a free soware license
GPU Graphics Processing Unit, the processor of a graphics adapter
GUI Graphical User Interface, a soware user interface using graphical elements

instead of text commands
HA Hazard Avoidance, a general term for all methods and techniques to protect a

spacecra from hazards during landing operations
HDD Hard Disk Drive, a storage device in computers
HiL Hardware-in-the-Loop, a real-time simulation technique including physical

sensors or actuators
IAG International Association of Geodesy, an association of the IUGG
IAU International Astronomical Union, an internationally recognized association

of professional astronomers and researchers; authority for, among others,
astronomical naming conventions and planetary nomenclature

IDE Integrated Development Environment, a soware development application
suite

INI Initialization File, a file storing application seings
IUGG International Union of Geodesy and Geophysics, an international organization

for Earth sciences and studies
JAXA Japan Aerospace Exploration Agency (Japanese:

独立行政法人宇宙航空研究開発機構), the Japanese space agency
JD Julian Date, a system for measuring time used in astronomy

4

JPL Jet Propulsion Laboratory, a well-known NASA facility managed by the
California Institute of Technology, Pasadena, California

LALT Laser Altimeter, an instrument aboard the JAXA SELENE mission
LAN Longitude of the Ascending Node, an angle used for specifying the orbit of an

object in space with relation to a reference frame
LDEM Lunar Digital Elevation Model, a DEM of the Moon (see definition of DEM

before)
LEO low Earth orbit, a geocentric orbit with apogee and perigee below 2 000 km

altitude above mean sea level
LIDAR Light Detection and Ranging, a technique for measuring distance to a target
LOLA Lunar Orbiter Laser Altimeter, an instrument of the Lunar Reconnaissance

Orbiter
LRO Lunar Reconnaissance Orbiter, a NASA mission to the Moon launched in 2009
MBR Minimum Bounding Rectangle, the smallest possible axes-parallel rectangle

enclosing a defined set of points or objects in a two-dimensional space
MCR MATLAB Compiler Runtime, a runtime enviroment for compiled MATLAB

scripts and applications
ME/PA Mean Earth/Polar Axis, a reference frame for the Moon, recommended by the

IAU
MJD Modified Julian Date, the result of the subtraction of a Julian date and the

number 2 400 000.5
MMR Mean Moon Radius, the volumetric mean radius (as defined by the IUGG) of

the Moon
MSIS Moon Surface Illumination Simulator, the nucleus of the MSISF producing

renderings of the Moon’s surface with variable illumination and observation
conditions

MSISF Moon Surface Illumination Simulation Framework, the soware developed
during this thesis for the illumination simulation of the Moon’s surface

NAIF Navigation and Ancillary Information Facility, a small group of NASA people
responsible for the development of SPICE located at the JPL

NASA National Aeronautics and Space Administration, the U.S. space agency
PDI Powered Descent Initiate, the initiation of a braking action subsequent to a

DOI, reducing the relative speed of a spacecra to the orbited body’s surface
PDS Planetary Data System, a data distribution system for NASA planetary

missions
PHP originally Personal Home Page, now Hypertext Preprocessor, a soware for

generating dynamical websites on webservers

5

PNG Portable Network Graphics, a file format for storing raster graphics
RAM Random-Access Memory, a high-speed computer memory for storing data of

program executions
RGB Red Green Blue, a color system
SELENE Selenological and Engineering Explorer, a lunar orbiter by JAXA, which is also

known as Kaguya
SDL Scene Description Language, a programming language used for the

description of rendering scenes in POV-Ray
SPICE Spacecra Planet Instrument C-matrix Events, a NASA NAIF toolkit for the

computation of geometric and astrodynamical information of objects in
space; available for C, Fortran, IDL and MATLAB

SQL Structured Query Language, a programming language for
querying/commanding a relational database system

SSD Solid-State Disk, a data storage device consisting of flash memory intended as
successor of conventional hard disk drives

TC Terrain Camera, an optical instrument aboard the JAXA SELENE mission
TIN Triangulated Irregular Network, a digital surface representation using faces of

interconnected triangles, which have been produced by triangulation of a
point cloud (f.e. with a Delaunay Triangulation)

TRN Terrain-Relative Navigation, a navigation technique that uses the
comparision of an a-priori reference map and in-situ measurements to gain
position and orientation information about spacecra during approach to
and descent on celestial bodies

TRON Testbed for Robotic Optical Navigation, a laboratory facility for tests and
evaluations within the DLR ATON project

UT1 Universal Time 1, a system for time measurement based on Earth’s rotation
UTC Coordinated Universal Time, a system for measuring time, which is the

world’s primary time standard
WPF Windows Presentation Foundation, a soware for generating GUIs in

Windows
XML Extensible Markup Language, a file format for storing machine-readable,

structured data

6

Notation Overview

General Notation Style

� All italic Latin andGreek symbols, both minuscules and majuscules, represent scalar
quantities, which can be variables, physical symbols or constants.
Examples: a, b, c, A,B,C, α, β,Ξ,Ψ, . . .

� Bold Latin minuscules represent vector quantities. e components of a vector x
are wrien as the italic symbol of x (since they are scalars) with running indices. So the
first component of vector x is x1, the second x2 and so on until the last component xn.
Vectors are always column vectors (row vectors are wrien as the transpose of column
vectors).
Examples: a,b, . . .

� Bold Latinmajuscules representm×n-matrices, wherem is the number of rows and
n the number of columns. One matrix component is wrien as the italic Latin minus-
cule of the bold matrix symbol, indexed by two numbers i and j, where the row of the
component is given by i and the column by j.
Examples: A,B, . . .

Matrix components:

X =


x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n

...
...

. . .
...

xm,1 xm,2 · · · xm,n


� Latin blackboard majuscules denote sets of numbers.

Examples: R for the set of real numbers, H for the set of quaternions

� Upright Latin symbols and strings

– imply functions, operators or constants with a traditional meaning
Examples: differtial operator d, Euler’s number e, imaginary units i, j, k, sine
function sin

7

– define new operators
Example: function PixelPos(x, y) to get the spatial position of one pixel

– are part of indices as abbreviations or complete words
Example: camera position cpos

– are variables in a textual equation
Example: direction = cpointing

� All other symbols have special meanings (see tables following) and are wrien in
a non-standard way because of tradition, practice or importance. ese symbols are
introduced at their time of appearance.

� Numbers with digits in parentheses, e.g. in 6.67428(67) · 10−11 (the value of the
Newtonian constant of gravitation), are a common way to state the uncertainty; this
is a short notation for (6.67428± 0.0000067) · 10−11.

Notation Meaning Note
!
=,

def.
=== definition symbols

⟨x,y⟩ dot product of vector x and y ⟨x,y⟩ !
=

n∑
i=1

xiyi

∥x∥ Euclidean norm (2-Norm) of vector x ∥x∥ !
=

√
x2
1 + x2

2 + . . . x2
n

∥x∥ !
= ⟨x,x⟩

a× b vector cross product of vectors a and b

M ·N or MN matrix multiplication of matrices M and N

q = [q0,q] quaternion (in general) with real part q0 and
imaginary vector part q

q = q0 + iq1 + jq2 + kq3

|q| norm of a quaternion q |q| =
√

q20 + q21 + q22 + q23

q̄ conjugate of a quaternion q q̄ = [q0,−q]

q · r or qr non-commutative quaternion multiplication of
quaterions q and r (in general)

x̂ unit vector of vector x x̂
!
= x

∥x∥

xT,XT transpose of vector x or matrix X [XT]ij
!
= [X]ji

l identification, correspondence

8

Constants

Sym. Meaning Value Source

c0 speed of light in vacuum 299 792 458 m
s [74, p. 637]

f$ polar Moon flaening 1/581.9 [81, p. 898]

g0 standard acceleration due to gravity 9.806 65 m
s2

[72, p. 364]

G Newtonian constant of gravitation 6.67428(67) · 10−11 m3

kg·s2 [74, pp. 686–689]

k Gaussian gravitational constant 0.017 202 098 95 [71, p. 58]

r$ volumetric mean Moon radius
(MMR)

1.73715 · 106 (±10)m [81, p. 898]

r$pol polar Moon radius 1.73566 · 106 m [81, p. 898]

r$eq mean equatorial Moon radius 1.73864 · 106 m [81, p. 898]

µ$ Moon’s standard gravitational
parameter

4.902 801 076 · 1012 (±8.1 · 104) m3

s2
[78, p. 305]

µÀ Sun’s standard gravitational
parameter

1.327 124 400 18 ·1020 (±8 ·109) m3

s2
[75]

τA light time for 1AU 499.004 783 806 (±0.000 000 01) s [75]

Conversion Factors

Description Conversion Source

Astronomical Units −→ Meters 1AU = 1.495 978 706 91 · 1011 (±3)m [75]

Julian Days −→ Seconds 1 d = 86 400 s [75]

Julian Years −→ Days 1 a = 365.25 d [75]

Degrees −→ Radians 1◦ = 1◦ · π
180◦ rad ≈ 0.017 453 293 rad

9

Symbols

Only symbols used in a global scope or context are listed here. Locally used symbols, i.e. within
derivations and explanations, are explained where they are introduced in the continuous text.

Sym. Meaning Unit (in
general)

Remark

a semi-major axis of an orbit (Keplerian element) m

cdirection camera direction vector (POV-Ray) m

cpos camera position m

cright camera-right vector (POV-Ray) m

cup camera-up vector (POV-Ray) m

e eccentricity of an orbit (Keplerian element) 1

e eccentricity vector

e standard orthonormal base of R3

E(t) eccentric anomaly at epoch t (in the context of
Keplerian elements)

rad

h orbital momentum vector m2

s2
h = r× ṙ

i inclination of an orbit (Keplerian element) rad

M mass (in general) kg

M0 mean anomaly at initial epoch t0 (Keplerian
element)

rad M0 = M(t0)

M(t) mean anomaly at epoch t (Keplerian element) rad

p(x, y, z) conversion function from rectangular
coordinates (x, y, z)T to selenographic
coordinates (ϑ, φ)

rad p : R3 → R2, (x, y, z)T 7→
(ϑ(x, y, z), φ(x, y, z))

p a point within the ME/PA reference frame (R3)
in general

m

p(ϑ, φ) conversion function from selenographic
coordinates (ϑ, φ) to rectangular coordinates

m p : R2 → R3, (ϑ, φ) 7→
(x(ϑ, φ), y(ϑ, φ), z(ϑ))T

pÀ Sun position in the ME/PA reference frame m

q quaternion (in general) 1

qR(α,u) rotation quaternion see chapter 7

r(t) position vector at time t within the ME/PA
reference frame (part of a state vector)

m

10

ṙ(t) velocity vector at time t within the ME/PA
reference frame (part of a state vector)

m
s

Rx, Ry ,
Rz

3-dimensional rotation matrix for a rotation
around the x-, y- or z-axis, respectively

t epoch (in the context of Keplerian elements) d

ϑ selenographic latitude rad

µ standard gravitational parameter of a celestial
body (in general)

m3

s2
µ = GM

ν(t) true anomaly at epoch t (in the context of
Keplerian elements)

rad

Ξ local tangent plane see chapter 9

φ selenographic longitude rad

ω argument of periapsis of an orbit (Keplerian
element)

rad

Ω image plane of the camera (resulting in a plane
of position vectors in the ME/PA reference
frame)

m for definition see equation
8.13 at page 108

Ω longitude of the ascending node of an orbit
(abbr. LAN; Keplerian element)

rad

11

1 C
ha

pt
er

Thesis Background and Scope

1.1 Future Challenges of Space Exploration Missions

e launch of Sputnik 1, the first artificial satellite to be placed in Earth’s orbit, on October
4th, 1957, marked the beginning of the Space Age — humanity was able to reach space for the
first time. During the past 55 years, great achievements have been made in the field of space
exploration: Mankind has been able to leave the Earth, and human beings have set foot on the
Moon. First installations in space with a permanent human crew, like the Mir (Russian: Мир;
lit. Peace or World) and the International Space Station (ISS), have been set up. Spacecra such
as Voyager 1 traveled more than 150 Astronomical Units all the way to the outer frontier of our
solar system and the limits of interstellar space. When the international community realized
— especially aer the end of the Cold War — that future missions will require international
cooperation, the world’s space agencies began to face a new era of space exploration.

In 2004, U.S. President George W. Bush announced the Vision for Space Exploration, the
U.S. space policy [96]. One objective among others was the extension of human presence
beyond low Earth orbit1 (LEO) in conjunction with a return to the Moon by the year 2020 and
the preparation for human exploration of Mars. As one consequence of the Vision for Space
Exploration, NASA established the Constellation Program (abbrv. CxP) in the same year. CxP
contained an ambitious plan for a human mission to Mars, using the Moon as a testbed for

Chapter Image: Artist’s concept of lunar lander Altair (NASA Constellation Program, cancelled). ©2007 NASA,
License: Public Domain. Available at http://www.nasa.gov/mission_pages/constellation/altair/altair_concept_
artwork.html.

1 Low Earth orbit: A geocentric orbit with apogee and perigee below 2 000 km altitude above mean sea level.

13

http://www.nasa.gov/mission_pages/constellation/altair/altair_concept_artwork.html
http://www.nasa.gov/mission_pages/constellation/altair/altair_concept_artwork.html

1 Thesis Background and Scope

future human and robotic missions [84, p. 3] (this kind of strategy is called the Moon-first
approach2). In 2006, NASA announced plans to establish a permanent lunar outpost [100].

Six years later, in 2010, President Barack Obama replaced the Vision for Space Exploration
with the new U.S. National Space Policy, canceling the Constellation Program on recommen-
dation of the Review of United States Human Space Flight Plans Commiee (also known as the
Augustine Commission), which stated that the CxP is not feasible within the assigned budget.
President Obama replaced the Moon-first approach with multiple destinations in the Solar
System, the so-called flexible-path approach.

Humanity’s interest in the heavens has been universal and enduring. Humans are driven to explore
the unknown, discover new worlds, push the boundaries of our scientific and technical limits, and
then push further. NASA is tasked with developing the capabilities that will support our country’s
long-term human space flight and exploration efforts. We have learned much in the last 50 years,
having embarked on a steady progression of activities and milestones with both domestic and inter-
national partners to prepare us for more difficult challenges to come. Our operations have increased
in complexity, and crewed space journeys have increased in duration. e focus of these efforts is
toward expanding permanent human presence beyond low Earth orbit.

— 2011 NASA Strategic Plan [97, p. 7]

NASA’s plans have been used as an example for the future development of space exploration
missions at this place, since it is the foremost space agency with respect to the exploration of
the solar system so far. However, in a long-term and broader view over all space agencies, aims
of current and future missions will be a return to the Moon, the human and robotic exploration
of near-Earth asteroids as well as Mars, and finally the extension of human presence in space
by seing up habitats on the Moon and Mars, even if those plans are delayed due to financial
or political amendments.

In 2004, the 14 leading space agencies formulated their common goals within a 25-year strat-
egy paper [87] as a vision for peaceful robotic and human space exploration. Common inter-
national goals, bringing benefits to all humans, are outlined as follows [87, p. 2]:

� search for life

� extend human presence

� develop exploration technologies and capabilities

� perform science to support human exploration

� stimulate economic expansion

2 e opposite approach, focusing on Mars as the first celestial body to be inhabited, is called the Mars-first approach.

14

1.1 Future Challenges of Space Exploration Missions

� perform space, Earth and applied science

� engange the public in exploration

� enhance Earth safety

A short summary of key objectives and challenges on a per-target basis for the ambitions of
future missions is given in the paper, too:

Target Key Objectives Challenges

Mars Search for life.

Advance understanding of planetary
evolution.

Learn to live on other planetary
surfaces.

Significant technology advancements
are essential for safe and affordable
missions.

Radiation risk and mitigation
techniques must be beer understood.

Highly reliable space systems and
infrastructure are needed.

Demonstrated ability to use local
resources is essential.

Moon Characterize availability of water and
other resources.

Test technologies and capabilities for
human space exploration.

Advance understanding of solar
system evolution.

Utilize the Moon’s unique importance
to engage the public.

Expenses associated with extended
surface activities.

Near-Earth
Asteroid

Demonstrate innovative deep space
exploration technologies and
capabilities.

Advance understanding of these
primitive bodies in solar system
evolution and the origin of life.

Test methods to defend the Earth
from risk of collisions with near-Earth
asteroids.

Need to beer understand and
characterize the asteroid population.

Technology advancements are needed
before missions to asteroids.

15

1 Thesis Background and Scope

LaGrange
Points/Cis-
Lunar Space

Expand capability of humans to
operate in this strategic region
beyond low-Earth orbit.

Demonstrate innovative deep-space
exploration technologies and
capabilities.

Understanding the benefit of human
presence vs. robots.

Table 1.1 is table shows common future targets of space exploration missions including
their key objectives and challenges. (“Summary of the Destination Assessment
Activity”, quoted from [87, p. 15])

1.2 Necessity of New Navigation Technologies

In our pursuit of the aforementioned goals, the development of advanced technologies for fu-
ture space exploration missions is inevitable, including development of technologies for the
establishment and the provision of outposts, as well as the exploration of locally limited phe-
nomena on moons, planets and asteroids. One requirement for these missions is a system for
autonomous, precise and secure navigation and landing on celestial bodies, for example, “[…]
to enable targeted landing of payloads near to each other and in-situ resources” [88, p. 1].

e European Space Agency (ESA) takes the automatic precision navigation and landing
into account in their Aurora program as one of the “technologies Europe must have” [86, p. 6].
e German national space program [82, pp. 12–14] adopted advanced technologies for future
space exploration missions as national science goals.

Today’s spacecra navigation systems rely onmeasurements and calculations done on Earth.
Navigating a spacecra in space involves two essential processes: First, a determination and
prediction of the spacecra position and velocity (state vector), which is called orbit determi-
nation, has to be done. e subsequent step is the flight path control, altering the spacecra
velocity (and by association its trajectory).

e step of orbit determination comprises the finding of the actual and accurate spacecra’s
orbital elements as well as the determination and accounting for perturbations in its natural
orbit. By comparison of the predicted spacecra’s trajectory (based on the orbit determination)
and the destination trajectory, necessary velocity changes can be calculated and commanded
to the spacecra (flight path control).

Contemporary orbit determination involves several measurements (e.g. Doppler and signal
latency measurements, Very Long Baseline Interferometry, precision ranging, etc.) done from

16

1.3 Ambitions of the German Aerospace Center (DLR)

Earth3. Since Earth’s orbital elements and motions are well known, every state referring to
Earth can be translated to other reference frames. An astrodynamical model, which will be
refined with each single measurement, is built and maintained on Earth. Based on this model,
the necessary trajectory predictions can be made. e big disadvantage of this technique is the
total dependency on Earth.

Hence, one critical part of future space exploration technologies will be new navigation sys-
tems for an accurate in-situ position determination of spacecra in the orbit or on the surface
of celestial bodies, as well as for a precise and safe landing procedure. It is important that these
measurements can be done completely independent of Earth, enabling missions without per-
manent contact to Earth or human intervention, as existing systems rely on the tracking and
flight path control from Earth. is ability is one key technology for a safe and autonomous
navigation and landing of robotic — or perhaps manned — spacecra.

A promising approach involves optical navigation technologies, because theirmeasurements
are completely independent from Earth, cuing away long signal latencies and the aforemen-
tioned constraints. Furthermore, such an optical navigation system is not affected by volatile
communication and tracking conditions (i.e. caused by occultation effects, transits, electro-
magnetic storms and so on). In addition, pictures taken by the optical navigation system can
be used for the selection of a safe landing place. ese advantages are currently bringing the
development of optical landing techniques to center stage worldwide.

1.3 Ambitions of the German Aerospace Center (DLR)

In the future plans of the German Aerospace Center (German: Deutsches Zentrum ür Lu-
und Raumfahrt, abbrv. DLR), the Moon is a primary target for the German space program
in the coming years. DLR established the interinstitutional project Autonomous Terrain-based
Optical Navigation (ATON) several years ago, aiming to develop a holistic navigation solution
for the three stages of a lunar landing procedure (described in the next paragraph). e DLR
Institute of Space Systems in Bremen hosts the Testbed for Robotic Optical Navigation (TRON),
a laboratory facility for the generation of real-time image data of the Moon’s surface.

Assuming that the spacecra is in a lunar parking orbit, a lunar landing procedure can be
divided into three stages4: At first, the landing procedure begins with a Descent Orbit Injection
maneuver (DOI), the short firing of the engines to initiate the following unpowered descent
from parking orbit to lunar surface, until the spacecra reaches an altitude of 10 to 15 km

3 A good overview in layman’s terms of the measurements done for orbit determination can be found at http://www2.
jpl.nasa.gov/basics/bsf13-1.php; this provides the basis for the contents in this section.

4 e overview of the stages of a lunar landing has been provided by Bolko Maass (DLR); this explanation is a rough
translation of his explanation into English.

17

http://www2.jpl.nasa.gov/basics/bsf13-1.php
http://www2.jpl.nasa.gov/basics/bsf13-1.php

1 Thesis Background and Scope

(∆v ≈ 20 . . . 30 m
s)

5. For a precise landing, a position determination with an accuracy of about
100m is necessary, and this cannot be achieved by conventional technology. One approach
is the navigation based on landmarks visible on images of the surface, while the spacecra
maintains a catalog of references aboard.

In the second phase, the spacecra’s relative velocity in relation to the Moon’s surface will
be reduced and the spacecra will be located about 1 000 to 1 500m over the target destination;
this braking action is called a Powered Descent Initiate (PDI). e engines are active during the
entire phase (∆v ≈ 1.7 . . . 1.8 km

s). During this phase a navigational solution for the descent
path is needed with an accuracy about 0.5 to 1 % of the current altitude. A solution could be
the terrain-relative navigation (TRN) based on the tracing of a significant, but unknown, point
on the Moon’s surface. A high frequency (>1Hz) estimation of the spacecra’s altitude and
velocity can be derived in conjunction with an acceleration sensor.

e last stage consists of the selection of a secure landing place within the given radius
of precision (so-called Hazard Avoidance, abbrv. HA) and the landing itself. e navigation
system maintains a map of the target area and compares the map with the optical input. All
errors arising from the preceding stages can be corrected during the ongoing descent. An in-
situ selection of a secure landing place is inevitable due to the lack of maps with sufficient
detail, which would enable an a priori selection of a landing place — even in the conceivable
future. Considerations regarding, for example, the absence of surface irregularities and stones
as well as a sun-illuminated landing place, have to be given to ensure a safe in-situ selection of
a landing place, as well as a rating of specific fuel consumption for maneuvers to alternative
landing sites. During this stage, the optical resolution will increase during descent, while
maneuverability will decrease.

Within the DLR ATON project, new navigation technologies for a lunar landing procedure
shall be developed with distinct approaches for the several stages (i.e. landmark detection,
feature tracking, stereo imaging, sensor technology). ATON’s principal objective is to develop
an image processing and navigation soware for estimating the position and orientation of a
spacecra, as well as to demonstrate a prototype in a laboratory environment. is environ-
ment is called the Testbed for Robotic Optical Navigation (TRON) [90].

TRON is a simulation chamber allowing the simulation of geometric, optical and astrody-
namical conditions during a landing procedure, starting with the approach to the celestial body
and ending with the landing itself, for a myriad of celestial bodies, including the Moon, Mars
and asteroids. e testbed is an isolated lab, equipped with a six degrees of freedom (DOF)
industrial robot on a rail system and a 5 DOF illumination system. e lab can be equipped

5 Delta-v (∆v) is a widely used measure for the capability of a spacecra to make an orbital maneuver (to change
from one trajectory to another). ∆v is mass-invariant and independent from technical details of the propulsion
system. Hence, a declaration of spacecra mass, thrust or fuel level is unnecessary.

18

1.3 Ambitions of the German Aerospace Center (DLR)

(a) Early stage: 6 DOF industrial robot on a rail system and one wall-mounted, preliminary 3D
surface tile

(b) Advanced stage: 6 DOF industrial robot (le) and the 5 DOF illumination system (right)
with installed bearing structure for the surface tiles. All walls have now been painted black
to reduce diffuse reflection.

Figure 1.1 TRON facility in an early and advanced stage of construction. © DLR; pictures
reproduced with friendly permission.

19

1 Thesis Background and Scope

Figure 1.2 A sample 3D surface tile of the Moon used in an advanced construction stage of
TRON, illuminated with the 5 DOF illumination system: Realistic shadows are
cast. © DLR; picture reproduced with friendly permission.

with wall-mounted 3D surface tiles (terrain models) of celestial bodies, which are made by
milling digital elevation models (DEM) out of foam material. is way, TRON can be used for
all celestial bodies, for which sufficient DEMs exist and 3D surface tiles have been fabricated.
A schematic diagram of TRON can be seen in figure 1.3.

Using this configuration, real-time high-quality shadows can be simulated and tests with 3D
sensors (i.e. stereo cameras, LIDAR sensors) are possible. Such sensors are mounted on the tool
center point of the robot, allowing them to be flown over the terrain in the fashion of a virtual
spacecra. In conjunction with dSPACE real-time simulation hardware, hardware-in-the-loop
simulations, qualifying and validating sensors and the later navigational solution, can be done
for all stages of a landing procedure.

is project is one branch of the ongoing research of the DLR towards a new optical naviga-
tion system by landmark detection and matching with a spacecra-maintained surface feature
catalog. In this context, craters are favored geographical features on solid planetary surfaces.
It can be assumed that they exhibit very characteristic shapes and that they are stable over

20

1.3
A
m
bitions

ofthe
G
erm

an
A
erospace

C
enter

(D
LR

)

Figure 1.3 Schematic overview of the Testbed for Robotic Optical Navigation (TRON) laboratory, located at the DLR Institute
of Space Systems in Bremen, as seen from above. e lab is divided into two sections: Operations (the simulation
control room) and simulations section. At the boom and the right border of the simulation section’s illustration the
wall-mounted surfaces tiles are depicted. ese tiles can be illuminated by a 5 DOF illumination system, as implied
by the red beam. e scene is then captured with sensors, i.e. optical or LIDAR sensors, which are mounted at the
tool center point of the 6 DOF industrial robot on a rail system. Reproduced with friendly permission from [90].

21

1 Thesis Background and Scope

a long duration in terms of shape, structure and positioning, as long as effects aributable
to erosion, physical and chemical weathering and denudation are absent or negligible on the
celestial surface. Hence, they can be used as landmarks in a navigational context.

Before captured craters can be compared against a catalog, they have to be perceived by a
soware out of images taken by the optical instruments. As Maass et al. [90] elucidate, ex-
isting algorithms require the satisfaction of some essential conditions, for example, a uniform
illumination over the entire image or a camera alignment perpendicular to the surface. Ad-
ditionally, they are too resource-intensive for current space-qualified hardware, resulting in
failed timing requirements needed for navigation purposes.

Furthermore, modern crater detection algorithms rely on some kind of edge detection of the
crater rim for crater identification. is seems a logical strategy, since most of the crater rims
on planetary surfaces can be perceived as circles or ellipses (according to the camera angle in
relation to the surface plane and impact angle of the crater’s cause). However, this model is
too restrictive to detect all craters; actually only a small subset of all craters are detectable with
such an approach, because not all crater rims are well-delimited (e.g. due to size, smoothness,
non-circular rims, stage of erosion or disturbances caused by other surface features).

With these strict limitations inmind, theDLR is developing a new edge-free, scale-, pose- and
illumination-invariant crater detection algorithm [90]. is algorithm relies on the detection of
crater-characteristic contrast areas due to a non-perpendicular illumination angle as illustrated
in figure 1.4.

Figure 1.4 Extraction of crater contrast areas out of a sample picture; the vector shown be-
yond is the local solar illumination vector. © DLR; reproduced from [90, p. 605]
with friendly permission.

is new algorithm shall remove the limitations of existing algorithms; moreover it is be-
lieved to

� increase the detection rate of craters,

� provide a performance enhancement,

� offer the possibility of a FPGA (Field Programmable Gate Array) implementation and

� lower the crater-diameter detectability threshold.

22

1.3 Ambitions of the German Aerospace Center (DLR)

(a) e Moon’s surface (Base Image:
JAXA/Kaguya/SELENE)

(b) Asteroid Letetia (Base Image: ESA/Rosea
Mission)

Figure 1.5 First results of the new crater detection algorithm on pictures of real celestial
surfaces. © DLR; pictures reproduced from [90, p. 608] with friendly permission.

Preliminary studies show promising results with respect to the previously mentioned goals,
since the algorithm’s performance is one hundred times higher compared to existing algo-
rithms and the crater diameter detection threshold could be lowered to only 6 pixels (current
thresholds are about 10 to 20 pixels) [90, p. 605]. First results on pictures of real scenarios can
be seen in figure 1.5.

Further work has to be done regarding systematic tests of the detection rate, stability, perfor-
mance and details of the algorithm, as it is currently in an early development stage. To promote
further development, the possibility of generating realistic surface images with well-known
illumination conditions is essential, as well as a technique for estimating the illumination di-
rection on these pictures. TRON will be an indispensable tool once it is completed. However,
it has some limitations, for example, the simulation of non-uniform illumination conditions
caused by the surface curvature or the curvature itself are not possible. In addition, TRON’s
surface coverage is limited, both in terms of its conception and its ability to switch to other
celestial bodies, as all wall-mounted surface tiles have to be changed.

23

1 Thesis Background and Scope

One solution would be a simulation soware; nevertheless such soware gives rise to new
limitations: Currently, required digital elevation models (DEM) are only available in sufficient
resolutions for the Moon and Mars. More importantly, no sensor tests or qualifications are
possible solely based on soware. is means that only a combination of the two approaches
can overcome the limitations; their results are directly comparable.

1.4 Thesis’ Contribution to Novel Navigation Systems

Optical navigation technologies based on images taken by cameras represent only one cate-
gory of terrain-relative navigation (TRN) methods, the passive-sensing TRN. In general, TRN
is thought to provide estimations of navigational parameters (position, velocity, aitude) by
comparing measurements with known surface features of a celestial body. Hence, a priori ref-
erence maps are needed for TRN, which can differ, depending on the chosen TRN approach.
e second category is active-sensing TRN approaches, which rely on active-ranging tech-
niques (LIDAR or radar altimetry). [89, p.1]

Both categories have advantages and disadvantages: Cameras, which are needed as sensors
in the passive imaging, are technologically mature and put small demands on the spacecra’s
engineering regarding power consumption, mass and volume; measurements are possible from
all altitudes for most of the methods. However, they impose an operation at solar illumination,
since they cannot operate in the dark. Active ranging, in contrast, eliminates this constraint,
but it is more resource-consuming than passive sensing and it imposes limits on the applicable
operating range, resulting in limitations to the altitude, in which the sensors are operational.
[89, p.2]

e aforementioned DLR research aims at the development of a TRN system based on land-
mark detection, which is basically an advanced crater-paernmatching approach to TRN. Nev-
ertheless, there are many other approaches to TRN besides crater-paern matching, which
require different inputs and produce distinct outputs. An overview of all current active- and
passive-sensing TRN approaches is given in figures 1.6 and 1.7, respectively.

Common to all passive-sensing TRN approaches is that all inputs result out of camera im-
ages. To date, no applicable soware has been developed for the generation of artificial ren-
derings of realistically illuminated planetary surfaces while determining the illumination di-
rection. Also, as TRON is not finished yet, appropriate test images of planetary surfaces with
well-known illumination directions for algorithms tests and error estimations are rare.

us, the primary objective of this thesis is the development of a surface illumination sim-
ulation soware for solid planetary surfaces. is simulation soware is a mandatory and es-
sential first step enroute to the generation of realistic test imagery for all passive-sensing TRN
approaches. Furthermore, this soware will enable the DLR to trial their new crater detection

24

1.4 Thesis’ Contribution to Novel Navigation Systems

Position Estimation

Imaging LIDAR Altimeter

Shape-Signature
Pattern Matching

Range-Image to DEM
Correlation

Altimeter-to-DEM
Correlation

Velocity Estimation

Imaging LIDAR

Consecutive Range-
Image Correlation

Active-Sensing

- Range Image
- Motion Correction Data
- Shape-Signature Data
 (Based on 3D Map)

- Range Image or Scans
- Motion Correction Data
- Absolute Attitude Estimate
- Digital Elevation Map

- Altimetry Swath
- Motion Correction Data
- Absolute Attitude Estimate
- Digital Elevation Map

- 2 Range Images
- Motion Correction Data
- 2 Attitudes

Absolute Position and Attitude Absolute Position Absolute Position Average Horizontal and
Vertical Velocity

- general approach solves
 for position and attitude
 w/o prior knowledge of
 these measurements
- independent of lighting
 conditions

- independent of lighting
 conditions
- more robust than
 Altimeter-to-DEM Correlation

- independent of lighting
 conditions
- sensors likely to work at higher
 altitudes (possibly up to 100 km)

- independent of lighting
 conditions

- long processing time
- more general than needed
- significant terrain relief required
- LIDAR less mature than camera

- long contour required
- LIDAR less mature than camera - image overlap required

- scanner, gimbal or imaging
 array required
- LIDAR less mature than camera

Raytheon Cruise Missile
TERCOM

Object Recognition
from Range Data

Sensing Modality

Objective

Sensor Type

Approach

Inputs

Output Estimates

Strengths

Limitations

Non-Space Application

Figure 1.6 Overview of active-sensing approaches for TRN. Only shown in completion to
figure 1.7, since these methods rely on ranging techniques, which are not appli-
cable to the thesis soware. (Image based on the table in [89, p. 4])

algorithm in conjunction with various illumination direction estimation techniques on the pro-
duced pictures. at is why a further thesis goal is to give an overview of existing approaches
for the determination of the illumination direction with some first algorithm implementations
and tests. All work has been done in the context of using the Moon as a representative of the
class of solid planetary surfaces with a significant number of craters.

e primary objective comprises the sighting, conditioning and selection of available lu-
nar topography data, as well as a conversion of these data sets for the creation of a virtual,
3D surface model of the Moon. is part involves considerations of suitable coordinate sys-
tems and transformations. e NASA/NAIF SPICE toolkit will be used for the geometrical and
astrodynamical calculations.

While the first objective conduces image synthesis, the second objective represents the im-
age analysis — and therefore an approach to illumination direction estimation. is part of the
thesis shall give a brief overview of this field of research, whereby the available literature shall
be primarily cited. Optionally, a selection or customization/development of methods and algo-

25

1
Th

es
is
B
ac
kg

ro
un

d
an

d
Sc
op

e

Position Estimation Velocity Estimation

Crater Pattern
Matching

Scale-Invariant Feature
Transform (SIFT)
Pattern Matching

Onboard Image Reconstruction
for Optical Navigation (OBIRON)

Surface-Patch Correlation
Image-to-Map Correlation

Descent Image Motion
Estimation Subsystem (DIMES)
Consecutive Image Correlation

Structure from Motion
Consecutive Image Correlation

Velocity and Attitude-Rate
Estimation

Camera

Sensing Modality

Objective

Sensor Type

Approach

Inputs

Passive-Sensing

- Descent Image
- Crater Landmark Database

- Descent Image
- SIFT Landmark Database

- Multiple Overlapping
 Orbital Images
- Descent Image
- Lander Attitude
- Lander Altitude

- Map Image
- Descent Image
- Lander Attitude
- Lander Altitude

- 3 Descent Images
- 3 Attitude Estimates
- 3 Altitude Estimates

- 2 Descent Images
- 2 Altitudes

Output Estimates Absolute Position and Attitude Absolute Position and
Attitude Update

CameraCamera

Absolute Position and Attitude Absolute Horizontal Position Average Horizontal Velocity Average Velocity and Angular
Rate between Images

Strengths

- insensitive to
 illumination changes
- no attitude or altitude
 measurements required

- general representation
 should work for all terrains
 including ones without craters
- no attitude or altitude
 measurements required

- general representation
 should work for all terrains
 including ones w/o craters
- built-in accomodation of
 illumination changes and
 terrain relief

- general representation
 should work for all terrains
 including ones w/o craters
- requires just one orbital
 image and no 3D modeling
 or rendering

- general representation
 should work for all terrains

- no attitude estimation
 required
- general representation
 should work for all terrains
- fast implementation and
 very accurate

Limitations - solar illumination required
- cratered terrain required

- solar illumination required
- illumination changes between
 image and map not well tolerated
- large out-of-plane rotations
 degrade performance

- solar illumination required
- multiple overlapping images
 of landing site required
- rendering of landing site
 map required prior to landing
- attitude/altitude estimations
 required

- solar illumination required
- possibly sensitive to large
 illumination changes and
 terrain relief

- solar illumination required
- overlap between consecutive
 images required

- solar illumination required
- overlap between consecutive
 images required

Non-Space Application Terrestrial Rover
Navigation

Raytheon Cruise Missile
DSMACS

Figure 1.7 Overview of passive-sensing approaches for terrain-relative navigation (TRN). e thesis soware can produce
renderings of planetary surfaces for all kinds of passive-sensing approaches for TRN, indicated by fields with yellow
and orange backgrounds. e crater detection algorithm currently developed by DLR within the ATON/TRON
project uses the Crater Paern Matching approach, which is marked in orange. As it can be inferred from this
overview, the thesis soware can be used not only for the current DLR project, but for all other TRN approaches.
(Image based on the table in [89, p. 4])

26

1.4 Thesis’ Contribution to Novel Navigation Systems

rithms shall be done; first algorithms shall be implemented, tested and rated with the images
resulting from the new surface-illumination simulation soware.

With the new soware resulting out of this thesis work, a basis will be established for the
generation of appropriate renderings of planetary surfaces at changing illumination conditions,
which can be used for all passive-sensing TRN approaches. is soware will be developed to
produce renderings not only for the Moon, but for all celestial bodies, for which digital eleva-
tion models exist. is way, the soware will be a worthwhile, reusable and flexible tool for
the research of TRN technologies. See figure 1.7 for a visualization of all TRN approaches for
which the new soware is applicable. e DLR approach is highlighted in orange in this figure,
while all other approaches for which the soware is additionally applicable are highlighted in
yellow. It can be inferred that the new soware has far-reaching implications for use beyond
the thesis’ scope.

All elaborations are considered to be proof of concept, so no considerations have been given
to computing time/complexity, resource utilization or algorithm optimality, and this is inten-
tional.

27

2 C
ha

pt
er

Introducing the Moon Surface
Illumination Simulation Framework

(MSISF)

2.1 General Concept

e Moon Surface Illumination Simulation Framework (MSISF) has been developed in pursuing
the primary objective of this thesis, the development of an illumination simulation soware for
the Moon’s surface. Initially, the development of a more general soware for the illumination
simulation of solid planetary surfaces was envisaged. is soware should use 3D modeling
techniques to create surfaces of artificial celestial bodies with a significant number of craters,
whichwould later be illuminated with 3D rendering and ray tracing techniques. Since for some
time highly precise LIDAR1 data of lunar topography has been available, the Moon has been
chosen as one representative of this class of celestial bodies. is way, a separate development

Chapter Image: Another way of gathering data regarding the Moon’s shape. Original image description: Wallops
automatic programmer being monitored by F.H. Forbes, July 29, 1950. Doppler radar recorders are behind Forbes.
Photograph published in A New Dimension; Wallops Island Flight Test Range: e First Fieen Years by Joseph
Adams Shortal. A NASA publication (page 100). ©1950 NASA, License: Public Domain. Available at http://lisar.
larc.nasa.gov/UTILS/info.cgi?id=EL-2002-00247.

1 Light Detection and Ranging is a technique for measuring a distance to a target using laser beams. For this purpose,
laser rays are shot to a target; the light will be usually reflected by the physical principle of backscaering. Mea-
suring the latency between outgoing and incoming light, the distance between target and observer can be derived
using the known speed of light in a vacuum.

29

http://lisar.larc.nasa.gov/UTILS/info.cgi?id=EL-2002-00247
http://lisar.larc.nasa.gov/UTILS/info.cgi?id=EL-2002-00247

2 Introducing the Moon Surface Illumination Simulation Framework (MSISF)

of an artificial 3D surface generator was no longer required.
e development of the MSISF took place from a practical point of view: As much as pos-

sible, already existing soware components should be used for this soware to ensure a rapid
development, fiing in the narrow timetable of a master’s thesis. In fact, nowadays a real
myriad of 3D modeling, rendering and ray tracing tools exist. However, there are a lot of
incompatibilities, restrictions and performance issues connected with the tight integration of
these tools into a distinct soware development process. Soware architecture planning has
to be well conceived to ensure a properly functioning collaboration of the individual soware
components.

2.2 Development Milestones

Out of these considerations, the soware to be developed is not only a single piece of bi-
nary code, but rather a framework of components for distinct tasks. Consequently, the devel-
oped soware was dubbedMoon Surface Illumination Simulation Framework (MSISF). Figure 2.1
shows an overview of the layout and functional interaction of the MSISF components. eMS-
ISF mainly consists of the Moon Surface Illumination Simulator (MSIS), which is the main user
interface. MSIS is a Windows command-line application, which makes use of the Microso
.NET Framework 4.0 and has been wrien in C#. is application invokes all steps to produce
the later renderings of the Moon’s surface, which involves, among other things, the astrody-
namical calculus, time conversion routines, the selection algorithm for the 3D mesh data used
and the invocation of POV-Ray as 3D rendering engine as well as methods for obtaining and
displaying meta information about the rendering.

MSIS compiles the used 3D data out of its own data repository, which is named paern
repository. is paern repository is built out of so-called digital elevation models (DEMs)
from external sources with the help of the PHP scripts ldem_mysql_insert.php and gener-
ate_pattern.phpwithin the MSISF paern preparation process. Additionally, the MSISF con-
sists of the NASA NAIF SPICE toolkit, used for the astrodynamical calculus as well as several
supporting MATLAB scripts, which were used for testing and rendering preparation during
this thesis work.

e MSISF development has been divided into six pieces of theoretical and practical work as
subsequent steps towards the final soware framework. ese steps will be described in brief
in the following paragraphs.

2.2.1 Reference Frame and Selenographic Coordinates

Before the start of any work regarding a soware development, preliminary considerations
of the theoretical foundations of the work to be done have to be made (chapter 3). First, the

30

2.2 Development Milestones

Pattern Generation
(selection, triangulation,

mesh generation)

Patterns
(POV-Ray meshes
of Moon’s surface

in 5°x5° tiles in
several resolutions)

POV-Ray
(Persistence of

Vision Raytracer)

Pattern Repository

fixed S/C
state vector

Batchset of
fixed S/C

state vectors

S/C orbit
KEPLER +Times

S/C orbit
state vectors +Times

OR
(exclusive)

DSPSA
Pattern Selection
(visibility tests

of Moon’s surface)

camera position
and orientation

SPICE

Moon Surface Illumination Simulator (MSIS)
(Main User Interface)

MSISF Pattern Preparation

Time
Conversions

Astrodynamical
Calculations

POV-Ray
Scene

Generation

POV-Ray
Rendering

Rendering

NASA LRO
LOLA Datasets
(binary DEMs in

different resolutions)

64164

MySQL Spatial Database

Data
Conditioning

Data
Import

Moon Surface Illumination
Simulation Framework (MSISF)

ldem_mysql_insert.php

generate_pattern.php

Figure 2.1 Overview of the components of the Moon Surface Illumination Simulation Frame-
work (MSISF).

predetermination of the coordinate system to be used for referencing positions in space is
essential for a coherent and standard-conform usage of all spatial coordinates. e author will
use the so-called Mean Earth/Polar Axis (ME/PA) reference frame, which is the reference frame
for the Moon recommended by the International Astronomical Union (IAU). Section 3.1 will
give an introduction to this reference frame.

Out of the definitions of this reference frame, an additional coordinate system for the easy
referencing of surface points can be derived, which is similiar to the geographic coordinate
sytem used on Earth by defining two numbers as latitude and longitude. is coordinate system
for the Moon is called the selenographic coordinate system; latitude and longitude value pairs
for the Moon’s surface are simply called selenographic coordinates. e conversion from spatial
coordinates within the ME/PA reference frame to selenographic coordinates and vice versa is
explained in section 3.2.

31

2 Introducing the Moon Surface Illumination Simulation Framework (MSISF)

2.2.2 Lunar Topography Data Acquisition

First of all — aer the decision was made to use lunar LIDAR data — appropriate digital eleva-
tion models (DEM)2 for the Moon’s surface have to be researched and examined, and will be
discussed in the first part of chapter 4. Without meaning to anticipate this chapter, the lunar
digital elevation models (LDEMs) of the NASA Lunar Reconnaissance Orbiter (LRO) mission
have been used.

2.2.3 Database Creation, Data Import and Conditioning

e second part of chapter 4 discusses how to harness the NASA LRO LOLA data to generate
a 3D model of the Moon’s surface. To achieve this, the DEMs have to be read and converted
to a utilizable format. Basically, the NASA LDEMs contain a point cloud, which is referenced
against an ideal sphere with a defined radius. is point cloud needs to be sorted; some parts
of it need to be selected in a simple and efficient way. It was obvious to use a spatial database,
which is optimized for such tasks. e decision was made to use MySQL for this purpose;
the second part of chapter 4 elucidates all steps towards building a global lunar topographic
database.

2.2.4 Surface Paern Generation

3D tiles of the lunar surface, so-called surface paerns, will be made out of the digital elevation
data stored in the spatial database, using the 2DDelaunay triangulation and producing surface
paerns in the form of triangulated irregular networks (TIN) for the entire lunar surface. ese

2 At the moment, no scientific notation standard has emerged for the usage of the terms digital elevation model (DEM),
digital terrain model (DTM) or digital surface model (DSM). e term digital elevation model (DEM) is oen used as a
collective term for both the digital terrain model (DTM) and the digital surface model (DSM).e author subscribes to
the common opinion that DTMs are data sets without capturing lifeforms (trees, plants etc.) and artificial structures
(buildings, streets and so on) on a surface and DSMs — in contrast — are data sets captured with all objects on the
surface (cf. figure 2.2).

Figure 2.2 Visualization of the difference between a digital terrain model (DTM) and a digital surface
model (DSM).

Since currently very few artificial structures exist on the Moon, all DSMs and DTMs will be virtually the same for
the Moon, so this is rather a question of notation than contentual difference. Henceforth, the author will use the
general term digital elevation model (DEM).

32

2.2 Development Milestones

surface paerns are stored in a file format which can be parsed by POV-Ray, an open source
3D ray tracing and rendering soware (chapter 5).

Aer all surface paerns for the entire lunar surface have been generated and stored3, the
Moon Surface Illumination Simulator (MSIS), which is the core soware component of the MS-
ISF, does all the necessary calculations (astrodynamical calculus, orbit and state determination,
time conversions), selects all the required surface paerns (based on what will be visible by a
virtual spacecra/camera in the orbit around the Moon) and initiates the rendering process by
invoking POV-Ray (chapter 6).

2.2.5 Surface Paern Selection, Assembling and Rendering

As said before, the renderings of the illuminated lunar surface will be done by using a virtual
spacecra/camera orbiting the Moon. Based on its orbit, a given time and some additional
parameters for orientation and geometry of the camera, the information about which parts of
the Moon’s surface will be visible on the later image can be derived using ray tracing tech-
niques. is is an indispensable step to cope with the enormous amount of LDEM data for
higher resolutions, since only really required data has to be included in the rendering process.
To determine the camera position and orientation, several predefinitions regarding a spacecra
orientation and rotation model have to be established (chapter 7).

2.2.6 Output of the Local Solar Illumination Angle

Additional considerations have been necessary regarding the dynamical selection of the re-
quired surface paerns, as well as for the determination of the local solar illumination angle.
e technique for the selection of the required surface paerns is named Dynamical Surface
Paern Selection Algorithm (DSPSA) and is documented in chapter 8, while the method used
for the determination of the local solar illumination angle is discussed in chapter 9.

2.2.7 Result Discussion

Finally, this thesis will end upwith a result discussion, several suggestions for improvements of
the MSISF and a comparison with latest results of the DLR research, especially with reference
to the TRON facility, as well as latest achievements in the generation of digital elevationmodels
using stereoscopic imaging techniques (chapter 10).

3 is process has to be done only once per LDEM resolution. eMSISF delivered to theDLR contains a pre-processed
surface paern repository, so there is no need to re-generate the surface paerns, unless a new LDEM resolution is
added, existing LDEM data has changed or surface paerns for another celestial body are generated.

33

2 Introducing the Moon Surface Illumination Simulation Framework (MSISF)

2.3 Preparatory Remarks

2.3.1 Soware and Programming Languages Used, Development
Environment

In the course of this book, the following chapters will provide information about the perfor-
mance of the used soware components (e.g. rendering times, MySQL query execution per-
formance profiles, etc.). In a world of rapidly changing IT systems, such information is only
useful with corresponding information of the used development and test environment, since
it has a significant impact on the overall performance. e database queries given in chap-
ter 4, for example, could be accelerated by a couple of times by replacing the conventional
harddrives, which are used as data storage for the MySQL database on the test machine, with
solid-state disks (SSDs). At the time of writing this thesis, SSDs with sufficient storage capacity
(> 250GiB) have just became affordable in the consumer sector.

All soware development and testing has been done on a single, standard personal computer
using Microso Windows 7 x64 Professional as operating system; table 2.1 gives an overview
of the hardware configuration. e MSIS has mainly been developed in C#, using Microso
Visual Studio 2010 Ultimate as an integrated development environment (IDE). e dynamic
link library (DLL) SPICEhelper.dll, which makes the required astrodynamical calculus using
the NASA NAIF SPICE toolkit available in C#4 has been developed in C++. e MSISF paern
preparation scripts are programmed in PHP 5. ere are some additional supporting scripts
wrien in MATLAB R2011b.

As said before, theMSISFmakes use of or depends on other soware components. If only the
MSIS is to be used on the target machine, which is sufficient for the production of renderings,
but not for the generation of surface paerns5, the following components are mandatory:

� Microso .NET Framework 4.0

� POV-Ray for Windows 3.7 RC36

4 is thesis uses the NASANAIF SPICE toolkit wrien in C/C++, which is also known as CSPICE. Tomake all CSPICE
functions available in C#, a wrapper would be necessary, which goes beyond the thesis’ scope. For that reason, all
necessary astrodynamical calculations have been wrien in C++, compiled into a *.dll file and imported into the
main C# project.

5 is setup type is conceivable, if a paern repository with all later used surface paerns is deployed along with the
MSISF installation and there is no need to add/update surface paerns.

6 A beta version (release candidate) of POV-Ray was used, because the 3.7 branch of POV-Ray will be the first one
supporting multi-threaded rendering by default. Users with more than one CPU will profit from multi-threaded
rendering.

34

2.3 Preparatory Remarks

Hardware Configuration Overview

Mainboard ASUS P5Q Premium

CPU Intel Core 2 ad Processor Q6600 (8M Cache, 2.40 GHz, 1066 MHz FSB)

RAM 16 GB (4 × G.Skill DIMM 4 GB DDR2-800 F2-6400CL5D-8GBPQ)

GPUs MSI nVIDIA GeForce GTX 260 896 MB GTX-260-T2D896-OC
Palit nVidia GeForce GTS 450 Sonic 1024 MB DDR5

HDDs OCZ Solid 3 2.5” SLD3-25SAT3-60G (System, RAID 1)
Corsair CSSD-F60 60 GB (System, RAID 1)
Samsung HD753LJ 750 GB (Data, RAID 1)
WDC WD7500AADS-0 750 GB (Data, RAID 1)

Table 2.1 Hardware configuration for the machine used as test and development environ-
ment.

If all components of the MSISF should be used, the following additional soware is necessary:

� MATLAB R2011b (e MathWorks) or MATLAB Compiler Runtime 7.167

� MySQL 5.5.22

� PHP 5.3.10

To build the MSIS, a Microso Visual Studio 2010 version8 and the full NASA NAIF SPICE
Toolkit for C/C++ (CSPICE) N0064 is required; CSPICE has to be placed in the directory
/src/SPICEhelper/CSPICE/ within the MSISF installation path.

For in-code documentation, doxygen 1.7.5 has been used as generator. e configuration
file for a documentation rebuild aer changes in the code documentation can be found in the
source directory of the MSISF installation path as /src/Doxyfile.

7 If MATLAB R2011b is not available on the target system, the MATLAB Compiler Runtime 7.16 can be used as
runtime environment, without the need to install a full MATLAB system.

8 e “Express” version of Microso Visual Studio 2010, which is available free of charge, might be sufficient for the
compilation of the MSIS, but has not been tested.

35

2 Introducing the Moon Surface Illumination Simulation Framework (MSISF)

2.3.2 MSIS User Interface, Definition of Inputs and Outputs

Before the soware development starts, all possible modes of operation shall be defined for the
main user interface, the MSIS. e MSIS is designed as a command-line application, which is
controlled by passing arguments to the application through the command-line prompt. MSIS
can operate in four distinct modes: e first one, for which the MSIS has primarily been de-
signed, is the batch file processing mode. In this mode, the MSIS will open a user-specified
text file, containing a set of so-called fixed spacecra states per one text line. A spacecra state
defines the simulation time as modified Julian date (MJD) in UTC time, the spacecra position
within the ME/PA reference frame and the spacecra orientation within this reference frame
as rotation quaternion. is operation mode will generate one rendering per given state. By
spliing large batch files, this operation mode can be used for the distributed computing of
rendering sequences using more than one single machine.

e second operation mode is a single fixed state, which is given as a command-line argu-
ment instead of a batch file. is way, the MSIS will only generate one rendering per call.
However, the MSIS can be invoked with multiple states using a standard Windows batch file
(*.bat), which produces multiple renderings, but with a separate MSIS call for each rendering.
is operation mode is mainly intended for testing purposes.

Both aforementioned operation modes require the user to pre-calculate a spacecra posi-
tion and orientation. If these parameters have not been pre-calculated, the user also has the
possibility to call the MSIS with a specification of the spacecra orbit around the Moon. Two
separate possibilities have been implemented to describe an orbit: A set of Keplerian elements
or a set of state vectors. In conjunction with a given epoch of these orbit parameters, the MSIS
will automatically calculate the actual spacecra position according to the actual simulation
time. e MSIS internally works with Keplerian elements; given state vectors will be con-
verted into a set of Keplerian elements.

With both of these operation modes, the MSIS can produce multiple renderings, if multiple
simulation times are specified. Without specification of an orientation quaternion, the cam-
era will be nadir-pointing; if an orientation quaternion is given, the camera will be rotated
accordingly, but will orient to the same direction at every simulation time, unless an aitude
transition (rotation rates about the camera’s axes) is given.

For more details on the operation modes as well as a specification of the available command-
line arguments, see section 6.3.

36

2.3 Preparatory Remarks

2.3.3 MSISF File System Layout

e MSISF can be installed to any user-given file system path. By default, the installer will
place the MSISF installation in the standard path for program files, for example, C:\Program
Files\MSISF\. e following list describes the directory structure of the MSISF installation:

/ MSISF installation directory (f.e. C:\Program Files\MSISF\)
/COPYRIGHT.txt copyright information file
/LICENSE.txt license information file
/README.txt soware information file
/bin/ binary files (compiled from the MSISF sources)
/bin/batchconvert.exe generates a Windows *.bat file with single MSIS calls out of a

MSIS batch file for distributed MSIS rendering
/bin/delaunay2D.exe 2D Delaunay Triangulation
/bin/MSIS.exe Moon Surface Illumination Simulator (MSIS)
/doc/ documents
/doc/MSIS_Code_Documentation/ MSIS code documentation (HTML format, use index.html)
/input/ batchset input files for the MSIS
/input/sample-scenarios.tab sample batch input file for the MSIS
/install/ MSISF and external installation files
/kernels/ SPICE kernels required by the MSIS
/kernels/de421.bsp DE421 planetary and lunar ephemeris (binary SPK file)
/kernels/moon_080317.tf lunar frame specifications for the DE421 ephemeris (text FK file)
/kernels/moon_assoc_me.tf Moon ME/PA frame association kernel (text FK file)
/kernels/moon_pa_de421_1900-2050.bpc high-accuracy lunar orientation data for the years 1900–2050

(binary PcK file)
/kernels/naif0009.tls leapseconds kernel (text LSK file)
/kernels/pck000009.tpc orientation, size and shape data for the natural bodies of the solar

system (text PcK file)
/lib/ MSISF dynamic resources
/lib/MSISRendering.dtd XML DTD for the rendering meta information XML file
/lib/SPICEhelper.dll SPICE connector for the MSIS
/output/ MSIS output directory
/pattern-repository/ paern repository
/pattern-repository/4/ surface paerns with 4 px/deg resolution
/scripts/ script files to be executed with other applications (PHP,

MATLAB)
/scripts/generate_pattern.php surface paern generation script
/scripts/ldem_mysql_insert.php NASA LRO LOLA LDEM MySQL import script
/src/ source code of the MSISF
/src/Installer/ NSIS installer source code for the MSISF
/src/MSIS/ source code for the MSIS
/src/SPICEhelper/ source code for SPICEhelper.dll
/src/SPICEhelper/CSPICE/ full installation of the NASA NAIF SPICE Toolkit for C/C++
/src/delaunay2D.m MATLAB source file for delaunay2D.exe
/src/Doxyfile configuration file for doxygen (in-code documentation)
/src/MSISF.sln Microso Visual Studio 2010 solution file for the MSISF

(containing the projects MSIS and SPICEhelper)

37

2 Introducing the Moon Surface Illumination Simulation Framework (MSISF)

2.3.4 MSISF Deployment and Installation

e MSISF in its first version is non-publicly deployed as a compressed archive to the German
Aerospace Center (DLR) along with compressed paern repositories in resolutions of 4, 16 and
64 px/deg of the NASA LRO LDEM files in version 1.05.

Some time aer graduation, the MSISF will be publicly deployed as a single setup file, which
can be downloaded at http://go.rene-schwarz.com/masters-thesis; a setup wizard will guide
the user through the installation process. is setup file contains a paern repository in ver-
sion 1.05 or greater of the NASA LOLA LDEM files with 4 px/deg resolution. is resolution
should be sufficient for renderings at high flight altitudes and for trying the soware. Paern
repositories with a greater resolution can be obtained separately from this website.

ose parts of the MSISF source code which have been wrien by the author will be subject
to the conditions of the free and open source GNU General Public License (GNU GPL) version
2 or later. A complete release of the MSISF as a project on GitHub is envisaged.

38

http://go.rene-schwarz.com/masters-thesis
http://www.github.com

3 C
ha

pt
er

Theoretical Foundations

3.1 The Mean Earth/Polar Axis Reference Frame

To coherently use spatial coordinates in the course of this thesis and the connected soware
development process, a definition of a reference frame to be used is required. As the Moon
is the point of origin for all further work, it is natural to choose a body-fixed reference frame
which is aached to the Moon. ere are several definitions for such reference frames. How-
ever, the decision has been made to use the so-called Mean Earth/Polar Axis reference frame
(abbreviated: ME/PA reference frame), which is consistent with the recommendations of the
IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets
and Satellites [6, p. 6]. In addition, the lunar digital elevation models (LDEMs) originating in
the NASA Lunar Reconnaissance Orbiter (LRO) mission, which have been used for this thesis
(see chapter 4), are also produced using this reference frame. All the following information
has been obtained from [6].

e ME/PA reference frame defines a right-handed cartesian coordinate system, which is
aached to the Moon’s center of mass (COM) at its origin. e z-axis of this coordinate system
is equivalent to the Moon’s mean axis of rotation; the x-axis is normal to the z-axis and goes
also through the Moon’s COM. Additionally, the intersection point of the equator and the
prime meridian is defined as being located on the x-axis. e y-axis is orthogonal to the plane
defined by x- and z-axis and goes to the Moon’s COM, too.

Last, the location of the primemeridian has to be declared to fix the coordinate system. In the
ME/PA reference frame, the prime meridian is aligned in the so-called mean Earth direction.
Because the Moon’s movement is tidally locked to Earth, only one side of the Moon can be
seen from Earth. By imagining a line between the Earth’s COM and the Moon’s COM, this

39

3 Theoretical Foundations

line will intersect the Moon’s surface. is point of intersection is called sub-Earth point. is
point moves during one Moon cycle due to the astrodynamical conditions1; however, the mean
position of this point on the Moon’s surface, called the mean sub-Earth point, is constant. e
prime meridian is defined to cross this point.

Finally, the ME/PA reference frame also states planetocentric spherical coordinates, which
will be called selenographic2 coordinates in this thesis. As with the geographic coordinates
on Earth, the single values of the selenographic coordinates are called selenographic latitude
and selenographic longitude. e selenographic latitude is measured from the prime meridian,
which marks 0° longitude, to the east (positive direction of rotation about the z-axis for the
right-handed coordinate system) toward 360°. Alternatively, the longitude can be measured
starting from the prime meridian to the east and to the west using the common +180° E/-180°
W convention. e selenographic latitude is the angle between the equatorial plane and the
vector from the COM to a point on the surface; it is measured from 0° for a point on the equator
until +90° N/-90° S at both poles.

3.2 Derivation of a Spherical Coordinate System for the
Moon

e Moon is commonly considered as a sphere; indeed it does not have the shape of a perfect
sphere, but rather, has the shape of an oblate spheroid. However, the difference between its
polar radius r$pol = 1735.66 km and mean equatorial radius r$eq = 1738.64 km is really small,
i.e. its flaening is f$ = 1−(rpol/req) ≈ 1/581.9, so that a coordinate laice can be modeled
as a sphere, accepting a small misalignment in the z-axis for the conversion of selenographical
coordinates into rectangular (cartesian) coordinates.

Given a sphere with an arbitrary radius r and center O = (0, 0, 0)T in the origin of a
spatial, right-handed, cartesian coordinate system with the coordinate triple p = (x, y, z)T

for an arbitrary point in the coordinate system, one can consider two distinct points p1 and p2

on the sphere’s surface. It should be clear that it is difficult to declare rectangular coordinates
with p1 = (x1, y1, z1)

T, p2 = (x2, y2, z2)
T on the surface directly (cf. figure 3.1). Also the

sphere eludes from an explicit, parametrized description so far.

By introducing an angle α between positive z-axis and the position vector p of an arbitrary
point as well as an angleφ ∈ R between the positive x-axis and the position vector’s projection
onto the plane defined by x- and y-axis, the position of an arbitrary point on the sphere’s

1 A video of this behaviour prepared by NASA can be seen here: http://lunarscience.nasa.gov/articles/
the-moons-hourly-appearance-in-2012/

2 e term “selenographic” consists of the two Greek words Σελήνη (Moon) and γραφειν (to draw, to describe).

40

http://lunarscience.nasa.gov/articles/the-moons-hourly-appearance-in-2012/
http://lunarscience.nasa.gov/articles/the-moons-hourly-appearance-in-2012/

3.2 Derivation of a Spherical Coordinate System for the Moon

Figure 3.1 Two distinct points on the surface of a sphere with center in the coordinate origin
O = (0, 0, 0)T and radius r. is illustration is based on the Wikipedia graphic
http://de.wikipedia.org/wiki/Datei:Orthodrome_globe.svg, accessed on Septem-
ber 23, 2010.

Figure 3.2 Representation of an arbitrary point p using spherical coordinates with polar
angle α, azimuthal angleφ and the radial distance r to the orgin of the coordinate
system.

41

http://de.wikipedia.org/wiki/Datei:Orthodrome_globe.svg

3 Theoretical Foundations

surface can be described easily using the distance to the origin of the coordinate system and
the two angles α and φ, where α ∈ [0, π] and φ ∈ [0, 2π[by convention3 (see figure 3.2).

In more general terms, a point at an arbitrary position in the coordinate system can now be
represented using the polar angle α, azimuthal angle φ and the radial distance r to the orgin
of the coordinate system:

p = (r, α, φ) (3.1)

is form of coordinates is referred to as spherical polar coordinates (or short: spherical
coordinates). Considering only points on the sphere’s surface, the distance to the origin of
the coordinate system is the same for all points; it is the sphere’s radius r. Now it is possible
to describe an arbitrary point on the sphere’s surface without being aware of its cartesian
coordinates with two angles, since r is constant and known:

p = (α, φ) (3.2)

To convert spherical into rectangular coordinates and vice versa, a consideration of the re-
lationship between spherical and rectangular coordinates is necessary. e radial distance r

of one point is simply the Euclidean norm of its position vector p:

r = ∥r∥ =
√
x2 + y2 + z2 (3.3)

By using trigonometric functions, it can be seen that the polar and azimuthal angle can be
wrien as

cosα =
z√

x2 + y2 + z2
(3.4)

and

tanφ =
y

x
. (3.5)

With the help of these basic geometric considerations, the conversion from rectangular to
spherical coordinates has been found. For the conversion from spherical to rectangular coor-
dinates, some additional steps are necessary: From equation 3.4 follows

cosα =
z√

x2 + y2 + z2︸ ︷︷ ︸
=r

cosα =
z

r
−→ z = r cosα . (3.6)

3 e angles α and φ are also called polar angle and azimuth in a spherical coordinate system.

42

3.2 Derivation of a Spherical Coordinate System for the Moon

e substitution of equation 3.3 by the equations 3.5 (reshaped to x = y
tanφ) and 3.4 origi-

nates the relation

r =

√
y2

tan2 φ
+ y2 + r2 cos2 α

r2 = y2
(

1

tan2 φ
+ 1

)
+ r2 cos2 α

y2 =
r2 − r2 cos2 α

1
tan2 φ + 1

tanx= sin x
cos x=========

r2 − r2 cos2 α
cos2 φ
sin2 φ

+ 1

=
r2 − r2 cos2 α
cos2 φ+sin2 φ

sin2 φ

cos2 x+sin2 x=1
============ (r2 − r2 cos2 α) sin2 φ

= r2 sin2 φ(1− cos2 α)

y =

√
r2 sin2 φ(1− cos2 α)

= r sinφ ·
√
(1− cos2 α)

±
√
1−cos2 x=sin x

============= r sinα sinφ

y = r sinα sinφ . (3.7)

Using the reshape of equation 3.5 and the newly derived equation 3.7, x evaluates to

x =
y

tanφ

=
r sinα sinφ

tanφ

tan x= sin x
cos x=========

r sinφ sinα cosφ

sinφ

x = r sinα cosφ . (3.8)

e polar angle α used here is not identical to the selenographic latitude ϑ, since the seleno-
graphic latitude is measured starting with the equator, not the north pole. is way, ϑ = α− π

2 .
e conversion from selenographic coordinates (latitude ϑ and longitude φ) to rectangular co-
ordinates within the ME/PA reference frame can now be wrien as

p(ϑ, φ) =

px(ϑ, φ)

py(ϑ, φ)

pz(ϑ, φ)

 =

r cosϑ cosφ

r cosϑ sinφ

r sinϑ

 (3.9)

and vice versa as

p(x, y, z) = p(ϑ(x, y, z), φ(x, y, z)) =
(
arcsin

z

r
, arctan2(y, x)

)
. (3.10)

43

4 C
ha

pt
er

Creating a Global Lunar Topographic
Database

4.1 Overview of Available Lunar Topographic Data

To build a spatial digital elevation model of the Moon’s surface, an investigation of available
topographic data for the Moon is necessary. Four publicly available data sets of the Moon’s
topography have been identified for the purpose of this thesis during the investigation.

e first and oldest available data set originated in the NASA Clementine mission (offi-
cially called Deep Space Program Science Experiment (DSPSE)) in 1994. e topographic data
is retrievable as a global equally gridded map at the finest resolution1 of 4 px/deg. e given
height differences are relative2 to a spheroid with a radius of 1 738 km at the equator and a
flaening of 1/3234.93. us, a resolution of ≈ 7.58 km/px at the equator is achieved.

A tentative aempt revealed that this data is not precise enough for the thesis’ scope. Figure
4.1 shows a visualization of the Clementine topographic data on a plane, where it can be seen
that the spatial resolution is too low for a realistic surface simulation. is is aggravated by the

Chapter Image: NASA’s Lunar Reconnaissance Orbiter (LRO) and NASA’s Lunar Crater Observation and Sensing
Satellite (LCROSS), ready for lioff on an Atlas V/Centaur rocket at Cape Canaveral Air Force Station in Florida on
June 18, 2009. ©2009 NASA/Kenornsley, License: Public Domain. Available at http://mediaarchive.ksc.nasa.gov/
detail.cfm?mediaid=41893.

1 e Clementine gravity and topography data products are described here: http://pds-geosciences.wustl.edu/lunar/
clem1-gravity-topo-v1/cl_8xxx/aareadme.txt

2 See the PDS label file for the finest resolution: http://pds-geosciences.wustl.edu/lunar/clem1-gravity-topo-v1/cl_
8xxx/topo/topogrd2.lbl

45

http://mediaarchive.ksc.nasa.gov/detail.cfm?mediaid=41893
http://mediaarchive.ksc.nasa.gov/detail.cfm?mediaid=41893
http://pds-geosciences.wustl.edu/lunar/clem1-gravity-topo-v1/cl_8xxx/aareadme.txt
http://pds-geosciences.wustl.edu/lunar/clem1-gravity-topo-v1/cl_8xxx/aareadme.txt
http://pds-geosciences.wustl.edu/lunar/clem1-gravity-topo-v1/cl_8xxx/topo/topogrd2.lbl
http://pds-geosciences.wustl.edu/lunar/clem1-gravity-topo-v1/cl_8xxx/topo/topogrd2.lbl

4 Creating a Global Lunar Topographic Database

Figure 4.1 Plane visualization of the Clementine topographic data at the finest resolution
(4 px/deg). A visual examination of the data shows that this data set is impractical
to generate a realistic surface illumination.

fact that some data grid points seem to be interpolated, resulting in a non-natural transition
between two sample points.

Two more topographic data sets are available from the 2007 JAXA SELENE (Selenological
and Engineering Explorer) mission and its Kaguya lunar orbiter spacecra. First, a DTM is
available from the LALT (Laser Altimeter) with a resolution of 16 px/deg. is resolution is
sufficient for a global or high-altitude rendering of the Moon’s surface, but does not meet
the requirements for a surface close-up rendering. In addition, DEMs generated out of stereo
images from the Terrain Camera (TC) are available with a resolution of 4 096 px/deg, which can
be retrieved using the SELENE Data Archive3. is data archive offers many options for the
post-processing of the SELENE data products, for example, the alteration of the map projection
(equirectangular, Mercator’s, orthographic, polar stereographic, Lambert’s conformal conic
or sinusoidal projection) as well as a resolution reduction from 4 096 px/deg to 2 048, 1 024, 512,
256, 128, 64 and resolutions <64 px/deg using distinct interpolation methods (nearest neighbor,

3 e SELENE Data Archive can be accessed at https://www.soac.selene.isas.jaxa.jp/archive/index.html.en.

46

https://www.soac.selene.isas.jaxa.jp/archive/index.html.en

4.2 Data from NASA’s Lunar Orbiter Laser Altimeter (LOLA)

bi-linear, cubic convolution). Unfortunately, the DEM is split into 7 200 separate files with a file
size of about 2.2 TiB; the data archive only allows the download of 100 files with a maximum
file size of 3 GiB simultaneously. For the thesis’ purpose, a resolution of 128 px/deg should
be sufficient in most cases. To retrieve a global DEM with such a resolution, laborious steps
regarding the post-processing, retrieval and data conversion need to be carried out, which are
beyond the thesis’ time limits.

A fourth source of a lunar DEM is the NASA Lunar Reconnaissance Orbiter (LRO)
spacecra, which was launched in 2009. e Lunar Orbiter Laser Altimeter (LOLA) instru-
ment aboard the LRO can produce DEMs with a maximum resolution of 1 024 px/deg (≈
29.612m/px) [107, p. 239, table 9]. DEMs (so-called “products” or “LRO Lunar Digital Ele-
vation Models” — LRO LDEMs) will be offered in eight resolutions: 4, 16, 32, 64, 128, 256, 512
and 1 024 px/deg [107, op. cit.]. ese DEMs, their resolutions and their file formats are ideally
suited for the thesis’ purposes.

4.2 Data from NASA’s Lunar Orbiter Laser Altimeter
(LOLA)

e Lunar Orbiter Laser Altimeter (LOLA) is an instrument aboard NASA’s Lunar Reconnais-
sance Orbiter (LRO), which is designed to gain data about Moon’s surface, supporting the
selection of landing sites for future exploration missions [107, p. 210]. e primary objective
of LOLA is the development of an accurate (approx. 50m) global geodetic grid [107, p. 212].
Other goals of the LOLA instrument are the characterization of the illumination conditions of
the polar region, the imaging of permanently shadowed regions, the identification of surface
polar ice, if present, [83, p. 322] ascertaining what goes along with the determination of the
surface reflectance4, as well as geodetic location, direction and magnitude of surface slopes
[107, p. 210].

LOLA uses laser altimetry as a measuring principle: First, an accurate range measure from
the LRO to the lunar surface is done. In conjunction with a precise LRO orbit determination,
a referencing of the surface ranges to the Moon’s center of mass is possible. is way, a high-
precision global geodetic grid in the ME/PA reference frame can be gathered. For this purpose,
LOLA has five laser beams (cf. picture 4.3) operating at a fixed rate of 28Hz and an overall
accuracy of 10 cm. [107, p. 209]. is means there is one shot for approximately every 57m
for a nominal ground track velocity of 1 600m/s, while each laser footprint (“spot”) will have
a diameter of 5m at a nominal flight altitude of 50 km [102, p. 4]. e spots are arranged

4 e presence of a critical amount of water ice crystals on the Moon’s surface would result in a measurable increase
in the surface reflectance [107, p. 210].

47

4 Creating a Global Lunar Topographic Database

Figure 4.2 e Lunar Reconnaissance Orbiter (LRO) in a near-final construction stage. e
entire instrument suite is visible from this perspective; the Lunar Orbiter Laser
Altimeter (LOLA) is the conical instrument directly beyond the white shining
plate. ©NASA/DebbieMcCallum. Obtained fromhttp://www.nasa.gov/mission_
pages/LRO/multimedia/lrocraft5.html.

in the form of a cross, being 25m apart from each other; the cross is being rotated by 26°
counterclockwise to the prograde movement of the spacecra, preferably to achieve a high
level of coverage [102, p. 4].

Several data products are generated using the LOLA data:

� EDR (Experiment Data Records): Raw, uncalibrated data from the LOLA instrument.

� RDR (Reduced Data Records): Calibrated, geolocated pulse returns, altitudes and reflec-
tivities. is information is produced aer a range calibration and orbital processing
using information of the spacecra’s trajectory, aitude history and a lunar orientation
model. All higher-level products are generated from the cumulative RDR product.

� SHADR (Spherical Harmonic Analysis Data Records): SHADRs contain coefficients for a
lunar spherical harmonic model of the lunar shape. ey will be generated out of GDRs.

48

http://www.nasa.gov/mission_pages/LRO/multimedia/lrocraft5.html
http://www.nasa.gov/mission_pages/LRO/multimedia/lrocraft5.html

4.2 Data from NASA’s Lunar Orbiter Laser Altimeter (LOLA)

1

4

5

2

3

1

4

5

2

3

1

4

5

2

3

1

4

5

2

3

S/C -X

S/C X

Figure 4.3 LOLA laser geometry on the ground for four consecutive shots; the numbers
represent the channel numbers. e solid, black-filled circles indicate the trans-
mied laser footprints on the Moon’s surface, while the solid, concentric circles
imply the receiver’s field of view. © NASA. Obtained from http://lunar.gsfc.nasa.
gov/lola/images/fig.pdf.

� GDR (Gridded Data Records): GDRs are the primary products of the LOLA instrument.
ey are raster digital elevation models (DEMs) of the lunar radius with reference to
a spherical reference point about the Moon’s center of mass. GDRs are available in
different resolutions (see table 4.1).

e GDRs are also called Lunar Digital Elevation Models (LDEMs), which differ not only in
terms of available resolution, but also projection method used. Global LDEMs are offered in
an equi-rectangular map projection (simple cylindrical projection), while the polar products,
which are usually in a higher resolution, are made available in polar stereographic projection.
[107, pp. 236 ff.].

LDEMs are formaed as binary pictures of the PDS5 object type IMAGE. ey are also pro-
vided in a geo-referenced JPG-2000 format. [107, p. 239].

A PDS object of the IMAGE type is a two-dimensional array of values, stored in a binary file.
e values are all of the same data type and each value is referred to as sample. An IMAGE object

5 ePDS format is a standardized data format for the distrubution of scientificmission data across all NASAmissions.
PDS stands for Planetary Data System, which is the NASA data distribution system for NASA’s planetary missions.

49

http://lunar.gsfc.nasa.gov/lola/images/fig.pdf
http://lunar.gsfc.nasa.gov/lola/images/fig.pdf

4 Creating a Global Lunar Topographic Database

Product Size Resolution
in m

px

Tiles

LDEM_4 4 MiB 7 580.8 — (global)
LDEM_16 64 MiB 1 895 — (global)
LDEM_32 256 MiB 947.6 — (global)
LDEM_64 1 GiB 473.8 — (global)
LDEM_128 2 GiB 236.9 — (global)
LDEM_256 4 × 2 GiB 118.45 4 tiles, longitudes 0:180:360 by

northern/southern hemisphere
LDEM_512 16 × 2 GiB 59.225 16 tiles, longitudes in 45° segments by

northern/southern hemisphere
LDEM_1024 64 × 2 GiB 29.612 64 tiles, longitudes in 45° segments, latitude

in 22.5° segements

Table 4.1 Available LRO LOLA equi-rectangular map-projected LDEM products. Based on
[107, p. 239].

consists of a series of lines, which contain a fixed number of samples per line. Each binary file
has a detached meta information file, called PDS label (*.lbl). e PDS Standard [76] requires
the four essential parameters

� LINES: number of lines in the image

� LINE_SAMPLES: number of samples in each line

� SAMPLE_BITS: number of bits in each individual sample

� SAMPLE_TYPE: data type of the samples

to be defined for an IMAGE-type object in a PDS label file. [76, p. A-64].
Usually, a LDEM PDS label file contains a lot more information and parameters, each of

which is discussed in the course of this chapter. is thesis makes use of version 1.05 of the LRO
LOLA data, which was released on March 15, 2011. According to the NASA statements in the
errata file6, these data products are only preliminary; they will be updated regularly with new
and more precise data, as the mission progresses. In other words, the used LDEM products are
partially interpolated, which introduces visible errors in the later MSIS renderings (see figure
4.4 for an example renderingwith visible flaws in the surface data caused by data interpolation).

6 available at http://imbrium.mit.edu/ERRATA.TXT

50

http://imbrium.mit.edu/ERRATA.TXT

4.3 LOLA Data Import and Conditioning

Figure 4.4 Visible flaws in the surface data caused by data interpolation in the preliminary
LRO LOLA LDEM products, shown on an example MSIS rendering.

For version 1.05 of the LOLA LDEM data, NASA states that the LDEM_64 product, which is
the highest resolution to be used in this thesis, is 45 % sampled and 55 % interpolated. At the
time of completion of this thesis, NASA released version 1.09 of the LOLA data on March 15,
2012, but the last statement concerning the data accuracy was made for version 1.07, released
on September 15, 2011. Table 4.2 gives a comparison of the data quality of versions 1.05 and
1.07.

4.3 LOLA Data Import and Conditioning

4.3.1 Overall Concept

Since the LOLA LDEM products are all of the same scheme, the usage of a database system has
been identified as the most efficient way to handle and store data. For this purpose, MySQL,
a free and open source database system, will be used. A MySQL database will maintain all
information regarding the lunar topography with additional data. In order to import the data
from the LOLA LDEM products, data processing is necessary.

51

4 Creating a Global Lunar Topographic Database

LDEM Version 1.05 Version 1.07
product fraction

sampled
fraction

interpolated
fraction
sampled

fraction
interpolated

LDEM_4 ≈ 100 % ≈ 0 % (only 33
bins lack shots)

100 % 0%

LDEM_16 90% 10% ≈ 100 % ≈ 0 %
LDEM_64 45% 55% 55% 45%
LDEM_128 28 % 72% 35% 65%
LDEM_256 17 % 83% 21% 79%
LDEM_512 — — 13% 87%

Table 4.2 Data coverage of the LOLA LDEM products for versions 1.05 and 1.07. Source:
Errata file of the LOLA PDS data node at http://imbrium.mit.edu/ERRATA.TXT.

is data processing and conditioning could be donewithmany programming languages and
concepts. To achieve rapid development, the scripting language PHP has been used, because
data processing is possible using only a few lines of code, the code is simple to understand and
PHP contains native functions for the connection and querying of MySQL databases.

First, considerations regarding the database and table design, as well as the MySQL server
configuration are necessary; these considerations are discussed in the next section. Subse-
quently, the process of the data import and conditioning using theMSISF LDEMMySQL import
script ldem_mysql_insert.php is elucidated in detail.

4.3.2 MySQL Database Design,ery Optimization and Commitment
of the MySQL Server Configuration to Database Performance

To store millions of data records7 regarding a global lunar topography, preparatory consider-
ations about the database design have to be made, since a well-conceived database design will
have a serious impact on the performance of database queries — a fact that shall be illustrated
in this section.

MySQL supports multiple databases per server instance, while each database can consist of
one or more tables together with corresponding views, triggers and procedures. A database
can be thought of as containing a myriad of datasets to a particular topic. For the purpose of
the MSISF, just one database, storing the lunar topography, is required. A separate table for

7 e LDEM_64 dataset, the biggest resolution to be used in the MSISF, will have a spatial resolution of 64 px/deg
latitude and longitude, which means that 642 · 360 · 180 = 265 420 800 samples have to be stored.

52

http://imbrium.mit.edu/ERRATA.TXT

4.3 LOLA Data Import and Conditioning

each available LRO LDEM resolution has been found to be appropriate with respect to arbitrary
expandability, data separation, storage requirements and query optimization8.

Furthermore, MySQL offers several possibilities for database-internal table structuring and
storage, which results in the availability of several storage engines (e.g. MyISAM, InnoDB,
CSV, Archive, etc. pp.). As of MySQL 5.5.5, InnoDB is the default storage engine for MySQL
tables, because InnoDB is ACID9-compliant and has advanced features concerning commit,
rollback, crash-recovery and row-level locking capabilities. MyISAM is a lile bit older than
InnoDB, lacking the aforementioned features, but is a well-proven storage engine, which is
mainly used for web applications and data warehousing. [94]

Nevertheless, MyISAM remains the only storage engine capable of spatial indices in spatial
columns [95]. is feature allows a severe acceleration of spatial queries to the database, as
illustrated later. Aer these considerations, one database with single tables using the MyISAM
storage engine for each LRO LDEM resolutionwill be used. Now, the table-level design remains
to be dealt with. A reasonable starting point for these deliberations is an examination of the
raw LRO LOLA LDEM data.

e LOLA LDEM data sets deliver one piece of information explicitly, the height over MMR
for a certain pair of latitude and longitude, which themselves can be inferred by the byte po-
sition of the height information in the LDEM file. So latitude and longitude are both defined
implicitly within the LRO LDEM files. An ingenuous aempt to create a first table structure
could be this MySQL table creation statement:

1 CREATE TABLE IF NOT EXISTS ‘ldem‘
2 (
3 ‘lat‘ double NOT NULL,
4 ‘lon‘ double NOT NULL,
5 ‘height‘ double NOT NULL,
6 PRIMARY KEY (‘lat‘,‘lon‘)
7) ENGINE=MyISAM DEFAULT CHARSET=utf8;

is table design stores all DEM data in a simple key/value form, whereas the primary key is
a multi-column index of the latitude and longitude value, and does not utilize MySQL’s spatial
extensions. To retrieve all elevation information within a rectangular surface patch, starting
at 25° N 10° E in the upper le corner and ending at 30° N 15° E in the boom right corner, one
can use the following MySQL query:

8 Another approach could be the storage of all resolutions in one single table, referencing the respective resolution
of one record against a foreign key of a resolution table. is method is called database normalization, but should
perform poorly for the designated purpose.

9 ACID is an acronym for Atomicity, Consistency, Isolation and Durability, a concept for the reliable processing of
database transactions.

53

4 Creating a Global Lunar Topographic Database

1 SELECT height FROM ldem
2 WHERE
3 lat >= 25 AND lon >= 10
4 AND lat < 30 AND lon < 15
5 ORDER BY lat, lon;

MySQL performs slowly on this query, especiallywith increasing resolution. Table 4.3 shows
a MySQL query performance comparison for this query for the three LDEM resolutions used.

A profiling10 of theMySQL query reveals that nearly all query time (450.910 s out of 451.554 s
total) is spent in executing the query (cf. table 4.4), while all other processing times for subse-
quent processes such as sorting, caching, and logging are negligible.

Furthermore, the table design demands the later user to have knowledge of the used refer-
ence radius of the Moon, to which all height values are relative. In the case of the LRO LDEMs
this is an arbitrarily chosen reference radius of 1 737.4 km, while the current best estimate of
the volumetric mean Moon radius is 1.73715 · 106 (±10)m [81, p. 898]. An inexperienced
user could introduce a systematic error of 250 (±10)m to all radius queries. e best practice
should be to provide an unambiguous and intuitive table design, which should provide addi-
tional pre-processed data, for example, the rectangular coordinates of the respective surface
point in the ME/PA reference frame, making subsequent calculations superfluous.

As said before, a regular query will perform poorly on the database, because no specialized
data index has been set up. MySQL’s MyISAM storage engine is capable of spatial indices in
spatial columns; it is obvious to create a spatial index out of a latitude/longitude pair. A spatial
location is stored as value of the data type point in MySQL, which is simply constructed using
the values of the latitude and longitude. Subsequently, the resulting column is marked as
SPATIAL KEY, which is a data index for the table. e following MySQL code snippet shows
the intermediate table layout for the development, which was used for each LDEM resolution
(shown for LDEM_4 as example):

1 CREATE TABLE IF NOT EXISTS ‘ldem_4‘ (
2 ‘point_id‘ bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT ’point ID’,
3 ‘line‘ int(10) unsigned NOT NULL,
4 ‘sample‘ int(10) unsigned NOT NULL,
5 ‘lat‘ double NOT NULL COMMENT ’latitude [deg]’,
6 ‘lon‘ double NOT NULL COMMENT ’longitude [deg]’,
7 ‘height‘ double NOT NULL,

10 eprofiling feature is a community feature ofMySQL.e output is shied line-by-line due to a programming error.
is means, for example, the time 443.645335 s (column “Duration”) in table 4.4 belongs to the process “executing”,
not to “sorting result”. is is a known bug of MySQL (bug #52492: “Issue with output of SHOW PROFILE”, http:
//bugs.mysql.com/bug.php?id=52492).

54

http://bugs.mysql.com/bug.php?id=52492
http://bugs.mysql.com/bug.php?id=52492

4.3 LOLA Data Import and Conditioning

LDEM_4 LDEM_16 LDEM_64
number of affected rows 400 6 400 102 400
query time 1.723 s 27.421 s 451.554 s

Table 4.3 MySQL query performance comparison for a 5° × 5° surface patch using standard
indices (PRIMARY KEY(…)).

Status Duration CPU_user CPU_system
starting 0.000023 0.000000 0.000000
waiting for query cache lock 0.000013 0.000000 0.000000
checking query cache for query 0.000157 0.000000 0.000000
checking permissions 0.000013 0.000000 0.000000
opening tables 0.202970 0.000000 0.000000
system lock 0.000013 0.000000 0.000000
waiting for query cache lock 0.000030 0.000000 0.000000
init 0.000116 0.000000 0.000000
optimizing 0.000029 0.000000 0.000000
statistics 0.000026 0.000000 0.000000
preparing 0.000052 0.000000 0.000000
executing 0.000004 0.000000 0.000000
sorting result 450.910301 80.434116 48.375910
sending data 0.027119 0.000000 0.000000
waiting for query cache lock 0.000013 0.000000 0.000000
sending data 0.001940 0.000000 0.000000
waiting for query cache lock 0.000014 0.000000 0.000000
… … … …
waiting for query cache lock 0.000014 0.000000 0.000000
sending data 0.002939 0.000000 0.000000
waiting for query cache lock 0.000021 0.000000 0.000000
sending data 0.047889 0.000000 0.000000
end 0.000012 0.000000 0.000000
query end 0.000004 0.000000 0.000000
closing tables 0.000017 0.000000 0.000000
freeing items 0.002088 0.000000 0.000000
logging slow query 0.000008 0.000000 0.000000
logging slow query 0.000008 0.000000 0.000000
cleaning up 0.000007 0.000000 0.000000

Table 4.4 MySQL profiling for the slow query on the LDEM_64 table (all values in seconds).

55

4 Creating a Global Lunar Topographic Database

8 ‘planetary_radius‘ double NOT NULL,
9 ‘x‘ double DEFAULT NULL,
10 ‘y‘ double DEFAULT NULL,
11 ‘z‘ double DEFAULT NULL,
12 ‘point‘ point NOT NULL,
13 PRIMARY KEY (‘point_id‘),
14 SPATIAL KEY ‘point_index‘ (‘point‘)
15) ENGINE=MyISAM DEFAULT CHARSET=utf8 AUTO_INCREMENT=1;

e table columns line, sample and height have been used for verification purposes only
during development; in the final table layout they have been removed to reduce the table stor-
age requirements. e final table layout is given by the following MySQL statement (again on
the example of LDEM_4):

1 CREATE TABLE IF NOT EXISTS ‘ldem_4‘ (
2 ‘point_id‘ bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT ’point ID’,
3 ‘lat‘ double NOT NULL COMMENT ’latitude [deg]’,
4 ‘lon‘ double NOT NULL COMMENT ’longitude [deg]’,
5 ‘planetary_radius‘ double NOT NULL,
6 ‘x‘ double DEFAULT NULL,
7 ‘y‘ double DEFAULT NULL,
8 ‘z‘ double DEFAULT NULL,
9 ‘point‘ point NOT NULL,
10 PRIMARY KEY (‘point_id‘),
11 SPATIAL KEY ‘point_index‘ (‘point‘)
12) ENGINE=MyISAM DEFAULT CHARSET=utf8 AUTO_INCREMENT=1;

Listing 4.1 Final table layout.

A comparison of the storage requirements between the intermediate table layout and the
final table layout shows (see table 4.5), that additional columns of simple data types, like int
and double, do not have a big influence on the table size. Noting this, the column plane-
tary_radius was kept for conceivable further uses of the spatial database.

An optimized spatial query for the example 5° × 5° surface patch, starting at 25° N 10° E in
the upper le corner and ending at 30° N 15° E in the boom right corner, utilizing MySQL
spatial extensions, can now be wrien as:

1 SELECT planetary_radius FROM ldem
2 WHERE
3 MBRContains(GeomFromText(’POLYGON((25 10, 25 15, 30 15, 30 10, 25 10))’), point)
4 ORDER BY lat, lon;

56

4.3 LOLA Data Import and Conditioning

LDEM_4 LDEM_16 LDEM_64

interm. final interm. final interm. final

number of data rows 1 036 800 16 588 800 265 420 800

average row size 248 B 232 B 250 B 234 B 250 B 234 B

space usage for data 106.8 MiB 91.0 MiB 1 708.6 MiB 1 455.5 MiB 27 337.1 MiB 23 287.5 MiB

space usage for index 138.1 MiB 138.1 MiB 2 240.4 MiB 2 240.4 MiB 35 989.3 MiB 35 989.3 MiB

total table size 244.9 MiB 229.0 MiB 3 949.0 MiB 3 695.9 MiB 63 326.5 MiB 59 276.8 MiB

Table 4.5 Comparison of the storage requirements for the used LDEM resolutions distin-
guished by the intermediate and the final table layout.

is querymakes use of a so-calledminimumbounding rectangle (MBR), the smallest possible
axes-parallel rectangle, enclosing a defined set of points or objects in a two-dimensional space.
Within the thesis’ scope it is the minimum (min(ϑ),min(φ)) and maximum (max(ϑ),max(φ))
extent of the latitude and longtitude of a defined set of points. MBRContains is one kind of
MySQL’s spatial functions for testing spatial relations between geometric objects. In combina-
tion with the spatial index, which results internally in an R-tree11 using the MyISAM storage
engine [92], highly optimized execution algorithms can be used. Spatial indices allow the ef-
fective computation of questions regarding measurements and relations between geometrical
objects, in contrast to the traditional indices of non-spatial databases, which are unable to
handle such queries effectively.

A performance comparison (see table 4.6) shows that up to 93.5 % of the overall query exe-
cution time can be saved using a spatial data index. e query profiling (cf. table 4.7) reveals
that the time savings are achieved during the execution process, as intended.

Here, it is important tomention that theMySQL server configuration has a significant impact
on the execution time of the SQL query. During tests for a reasonable configuration, execution
times up to 45 minutes (not using MySQL spatial extensions) occurred. e aforementioned
execution times could be achieved using an optimized MySQL server instance configuration.
e MySQL server instance configuration file (*.ini file) is aached as appendix B.1.

11 In computer science, R-trees are multi-dimensional index structures, which are organized in a tree data structure.
An R-tree requires more memory and causes higher computation times for changes in the indexed data, but it has
a high spatial query performance. In the case of this thesis, the database will change rarely, so the query time is the
most important property.

57

4 Creating a Global Lunar Topographic Database

LDEM_4 LDEM_16 LDEM_64
number of affected rows 400 6 400 102 400
query time 0.297 s 2.133 s 29.342 s
time savings compared to
standard method

1.426 s
(-82.8 %)

25.288 s
(-92.2 %)

422.212 s
(-93.5 %)

Table 4.6 MySQL query performance comparison for a 5° × 5° surface patch using a spatial
index (SPATIAL KEY …).

Status Duration CPU_user CPU_system
starting 0.000019 0.000000 0.000000
waiting for query cache lock 0.000012 0.000000 0.000000
checking query cache for query 0.000173 0.000000 0.000000
checking permissions 0.000011 0.000000 0.000000
opening tables 0.012992 0.000000 0.000000
system lock 0.000031 0.000000 0.000000
init 0.000068 0.000000 0.000000
optimizing 0.000018 0.000000 0.000000
statistics 0.029689 0.000000 0.000000
preparing 0.000055 0.000000 0.000000
executing 0.000004 0.000000 0.000000
sorting result 28.276892 0.405603 1.560010
sending data 0.957158 0.234002 0.702005
end 0.000011 0.000000 0.000000
query end 0.000002 0.000000 0.000000
closing tables 0.000013 0.000000 0.000000
freeing items 0.000336 0.000000 0.000000
logging slow query 0.000004 0.000000 0.000000
logging slow query 0.000003 0.000000 0.000000
cleaning up 0.000003 0.000000 0.000000

Table 4.7 MySQL profiling for the optimized query on the LDEM_64 table (all values in sec-
onds).

58

4.3 LOLA Data Import and Conditioning

4.3.3 Importing the LOLA Data into the MySQL Database

e import process of a NASA LRO LDEM file is done via the ldem_mysql_insert.php script
(located in the MSISF-directory /scripts; see appendix B.3 for a printed version), which can
be run from the windows command prompt12 as PHP script:

php ldem_mysql_insert.php

e configuration variables at the beginning of the script have to be edited before script
execution. ere are six necessary variables, which need to be adjusted to the actual use case:

76 # ===
77 # Configuration of the MySQL import process
78 # ===
79

80 # LDEM resolution (integer) to be used (preconfigured for LDEM_4, LDEM_16,
81 # LDEM_64, LDEM_128, LDEM_256, LDEM_512 and LDEM_1024).
82 $LDEM = 1024;
83

84 # Path to LDEM directory, where all LDEM files (*.img) to be imported are placed
85 # (w/o trailing slash)
86 $path_LDEM = ”L:/path/to/LDEM”;
87

88 # MySQL connection parameters
89 $mysql_host = ”localhost”; # MySQL server, e.g. ”localhost” or ”localhost:3306”
90 $mysql_db = ””; # MySQL database
91 $mysql_user = ””; # MySQL username for specified database
92 $mysql_pwd = ””; # MySQL password for specified username

$LDEM defines the LRO LDEM resolution that is going to be imported; $path_LDEM denotes
the file system path of the LDEM file. It is important to ensure that the original file names
from NASA are kept, since the script will make use of the NASA file name scheme. e other
four variables configure the connection to the MySQL database with their intuitive meanings
($mysql_host, $mysql_db, $mysql_user, $mysql_pwd). e import script expects the existence
of the corresponding LDEM_… table13 with the final table layout as specified as in the previous
section; this table has to be created manually before script execution.

12 It is assumed that a recent version of PHP (http://php.net) is properly installed and the PHP binary php.exe is
available through the system’s PATH variable.

13 e table for a LDEM with a resolution of, for example, 64 px/deg, has to be named LDEM_64.

59

http://php.net

4 Creating a Global Lunar Topographic Database

Additionally, the import script needs some information about the LDEM file itself to ensure
the correct allocation of the spatial position for each single byte14. e corresponding config-
uration variables have been prepared for each available LDEM resolution, that is 4, 16, 64, 128,
256, 512 and 1 024 px/deg. If new LDEM versions are released by NASA in future, these values
could change, so a manual verification before using new LDEM files is advised.

Each LDEMfile has a corresponding label file (*.lbl), in which all information regarding the
binary LDEMfile is stored in the PDS format. A PDS file is a simple text file with a standardized
syntax. e required parameters are

� the LDEM resolution (MAP_RESOLUTION),

� the number of data samples per line (LINE_SAMPLES),

� the line containing the last pixel (LINE_LAST_PIXEL),

� the line projection offset (LINE_PROJECTION_OFFSET) and

� the sample projection offset (SAMPLE_PROJECTION_OFFSET).

e values of the specified parameters have been inherited from the current available LDEM
files with version 1.05 (2011/03/15) and are stored in the corresponding configuration variables:

94 # LDEM-specific options
95 # These parameters can be found in the corresponding *.lbl files for each *.img file.
96 # Preconfigured for LDEM_4, LDEM_16, LDEM_64, LDEM_128, LDEM_256, LDEM_512 and LDEM_1024.
97 switch($LDEM)
98 {
99 case 4:
100 default:
101 /* LDEM_4 */
102 $c_MAP_RESOLUTION = 4;
103 $c_LINE_SAMPLES = 1440;
104 $c_LINE_LAST_PIXEL = 720;
105 $c_LINE_PROJECTION_OFFSET = 359.5;
106 $c_SAMPLE_PROJECTION_OFFSET = 719.5;
107 break;
108

109 case 16:
110 /* LDEM_16 */
111 $c_MAP_RESOLUTION = 16;
112 $c_LINE_SAMPLES = 5760;

14 e import script is designed for the import of LDEM files in simple cylindrical projection only. ese LDEM data
files can be retrieved from http://imbrium.mit.edu/DATA/LOLA_GDR/CYLINDRICAL/IMG/. Other files differ in
the projection type used and therefore need to be processed in a different way.

60

http://imbrium.mit.edu/DATA/LOLA_GDR/CYLINDRICAL/IMG/

4.3 LOLA Data Import and Conditioning

113 $c_LINE_LAST_PIXEL = 2880;
114 $c_LINE_PROJECTION_OFFSET = 1439.5;
115 $c_SAMPLE_PROJECTION_OFFSET = 2879.5;
116 break;
117

118 case 64:
119 /* LDEM_64 */
120 $c_MAP_RESOLUTION = 64;
121 $c_LINE_SAMPLES = 23040;
122 $c_LINE_LAST_PIXEL = 11520;
123 $c_LINE_PROJECTION_OFFSET = 5759.5;
124 $c_SAMPLE_PROJECTION_OFFSET = 11519.5;
125 break;
126

127 case 128:
128 /* LDEM_128 */
129 $c_MAP_RESOLUTION = 128;
130 $c_LINE_SAMPLES = 46080;
131 $c_LINE_LAST_PIXEL = 23040;
132 $c_LINE_PROJECTION_OFFSET = 11519.5;
133 $c_SAMPLE_PROJECTION_OFFSET = 23039.5;
134 break;
135

136 case 256:
137 /* LDEM_256 */
138 $c_MAP_RESOLUTION = 256;
139 $c_LINE_SAMPLES = 46080;
140 $c_LINE_LAST_PIXEL = 23040;
141 break;
142

143 case 512:
144 /* LDEM_512 */
145 $c_MAP_RESOLUTION = 512;
146 $c_LINE_SAMPLES = 46080;
147 $c_LINE_LAST_PIXEL = 23040;
148 break;
149

150 case 1024:
151 /* LDEM_1024 */
152 $c_MAP_RESOLUTION = 1024;
153 $c_LINE_SAMPLES = 30720;
154 $c_LINE_LAST_PIXEL = 15360;
155 break;
156 }

61

4 Creating a Global Lunar Topographic Database

For LDEM resolutions greater than 128 px/deg, the LDEM files have been split by NASA.
Although the MAP_RESOLUTION, LINE_SAMPLES and LINE_LAST_PIXEL parameters are identical
for each file of one resolution, the LINE_PROJECTION_OFFSET and SAMPLE_PROJECTION_OFFSET
parameters change from file to file. Additional command-line arguments have to be supplied
for the specification of the certain LDEM part. e values can be found in the corresponding
*.lbl file. For these LDEM products, the import script has to be invoked with

php ldem_mysql_insert.php additionalFilenamePart LINE_PROJECTION_OFFSET ▼
SAMPLE_PROJECTION_OFFSET

where ▼ means that a line break was introduced for typographic reasons, but there must be no
line break here. e import command, for example, for the LDEM file LDEM_1024_00N_15N-
_330_360.img would be

php ldem_mysql_insert.php 00N_15N_330_360 15359.5 -153600.5

according to its label file LDEM_1024_00N_15N_330_360.LBL:

1 PDS_VERSION_ID = ”PDS3”
2

3 /*** GENERAL DATA DESCRIPTION PARAMETERS ***/
4 PRODUCT_VERSION_ID = ”V1.05”
5 DATA_SET_ID = ”LRO-L-LOLA-4-GDR-V1.0”
6 PRODUCT_ID = ”LDEM_1024_00N_15N_330_360”
7 INSTRUMENT_HOST_NAME = ”LUNAR RECONNAISSANCE ORBITER”
8 INSTRUMENT_NAME = ”LUNAR ORBITER LASER ALTIMETER”
9 INSTRUMENT_ID = ”LOLA”
10 MISSION_PHASE_NAME = {”COMMISSIONING”,”NOMINAL MISSION”,”SCIENCE
11 MISSION”}
12 TARGET_NAME = MOON
13 PRODUCT_CREATION_TIME = 2011-03-15T00:00:00
14 PRODUCER_ID = LRO_LOLA_TEAM
15 PRODUCER_FULL_NAME = ”DAVID E. SMITH”
16 PRODUCER_INSTITUTION_NAME = ”GODDARD SPACE FLIGHT CENTER”
17 OBJECT = UNCOMPRESSED_FILE
18 FILE_NAME = ”LDEM_1024_00N_15N_330_360.IMG”
19 RECORD_TYPE = FIXED_LENGTH
20 FILE_RECORDS = 15360
21 RECORD_BYTES = 61440
22 ^IMAGE = ”LDEM_1024_00N_15N_330_360.IMG”
23

24 OBJECT = IMAGE
25 NAME = HEIGHT
26 DESCRIPTION = ”Each sample represents height relative to a
27 reference radius (OFFSET) and is generated using preliminary LOLA data

62

4.3 LOLA Data Import and Conditioning

28 produced by the LOLA team.”
29 LINES = 15360
30 LINE_SAMPLES = 30720
31 SAMPLE_TYPE = LSB_INTEGER
32 SAMPLE_BITS = 16
33 UNIT = METER
34 SCALING_FACTOR = 0.5
35 OFFSET = 1737400.
36 END_OBJECT = IMAGE
37 END_OBJECT = UNCOMPRESSED_FILE
38

39 OBJECT = IMAGE_MAP_PROJECTION
40 ^DATA_SET_MAP_PROJECTION = ”DSMAP.CAT”
41 MAP_PROJECTION_TYPE = ”SIMPLE CYLINDRICAL”
42 MAP_RESOLUTION = 1024 <pix/deg>
43 A_AXIS_RADIUS = 1737.4 <km>
44 B_AXIS_RADIUS = 1737.4 <km>
45 C_AXIS_RADIUS = 1737.4 <km>
46 FIRST_STANDARD_PARALLEL = ’N/A’
47 SECOND_STANDARD_PARALLEL = ’N/A’
48 POSITIVE_LONGITUDE_DIRECTION = ”EAST”
49 CENTER_LATITUDE = 0. <deg>
50 CENTER_LONGITUDE = 180. <deg>
51 REFERENCE_LATITUDE = ’N/A’
52 REFERENCE_LONGITUDE = ’N/A’
53 LINE_FIRST_PIXEL = 1
54 LINE_LAST_PIXEL = 15360
55 SAMPLE_FIRST_PIXEL = 1
56 SAMPLE_LAST_PIXEL = 30720
57 MAP_PROJECTION_ROTATION = 0.0
58 MAP_SCALE = 0.0296126469 <km/pix>
59 MAXIMUM_LATITUDE = 15 <deg>
60 MINIMUM_LATITUDE = 0 <deg>
61 WESTERNMOST_LONGITUDE = 330 <deg>
62 EASTERNMOST_LONGITUDE = 360 <deg>
63 LINE_PROJECTION_OFFSET = 15359.5 <pix>
64 SAMPLE_PROJECTION_OFFSET = -153600.5 <pix>
65 COORDINATE_SYSTEM_TYPE = ”BODY-FIXED ROTATING”
66 COORDINATE_SYSTEM_NAME = ”MEAN EARTH/POLAR AXIS OF DE421”
67 END_OBJECT = IMAGE_MAP_PROJECTION
68 END

Listing 4.2 Example content of a PDS label file. Shown here: e corresponding label file
LDEM_1024_00N_15N_330_360.LBL for a LDEM file (.img file), shortened only to
give an impression of the PDS format.

63

4 Creating a Global Lunar Topographic Database

Aer seing the configuration variables, the script will open a read-only file handle to the
specified LRO LDEM file and will establish the database connection (lines 205–216 in the code
listing in appendix B.3). Subsequently, the script cycles through the binary LDEM file line
by line (lines 218–292). During one cycle, which means one line of the LDEM file has been
processed, the script usually forms one SQL query to insert one data row per line sample.
Usually, in this context, connotes that the query length will be limited to 24 000 single MySQL
insert operations (“inserts”) in one SQL query to ensure that one query will not exceed the
maxmimum allowed packet size on the MySQL server15. is value reflects the maximum
number of samples in one LDEM_64 line (23 040 values per line) with an additional margin,
since this will be the highest resolution to be used in this thesis. For higher resolutions, the
script will automatically split all MySQL insert operations with more than 24 000 inserts (lines
262–274).

e procedure of one cycle shall be illustrated in the following paragraphs. As said before,
the number of cycles is determined by the number of lines in the LDEM file (indicated by the
LINE_SAMPLES parameter in the PDS label file); the line number∈ [1, LINE_SAMPLES] is the loop
iteration variable $line (line 218). First, the import script reads the entire line of the LDEM file
(lines 225 and 226), while the number of bytes to be read is determined by the RECORD_BYTES
PDS parameter, starting from

start byte = ($line− 1) · RECORD_BYTES. (4.1)

is line is split up into an array of each single byte, using the unpack function of PHP;
the result is stored as an array $line_content (line 226). Each array entry is now one integer
value, representing the measured height over MMR for a certain point on the Moon’s surface.
Furthermore, the preceding part of SQL statement is being prepared in a MySQL command
string variable (lines 228–229). e MySQL inserts will simply be appended to this string later.

e script loops through all samples of the line now, beginning with sample 1 and ending
with the number of samples per line, as specified by the LINE_SAMPLES PDS parameter. In this
loop, the values for all MySQL table columns will be calculated for each sample as well as one
ordered 7-tuple is being added to the MySQL command string as one row to be inserted into
the corresponding LDEM table. e exact allocation of one height value to a specific point on
the Moon’s surface for one sample point is calculated using the NASA-supplied equations in

15 e maximum allowed packet size per query is a MySQL configuration option (max_allowed_packet). By default
configuration, the max_allowed_packet option is set to 1 MiB. e largest possible size of one single SQL query to
a MySQL server is limited to 1 GiB [93].

64

4.3 LOLA Data Import and Conditioning

the LRO data set map projection information for the simple cylindrical projection16,17:

latitude = CENTER_LATITUDE− $line− LINE_PROJECTION_OFFSET− 1

MAP_RESOLUTION
(4.2)

longitude = CENTER_LONGITUDE+
$sample− SAMPLE_PROJECTION_OFFSET− 1

MAP_RESOLUTION
(4.3)

height = $dn · SCALING_FACTOR (4.4)

planetary radius = height+ OFFSET (4.5)

Out of this information, the spatial coordinates in the Moon ME/PA reference frame can be
obtained as follows (cf. section 3.2):

x = planetary radius · cos
(
latitude · π

180◦

)
· cos

(
longitude · π

180◦

)
(4.6)

y = planetary radius · cos
(
latitude · π

180◦

)
· sin

(
longitude · π

180◦

)
(4.7)

z = planetary radius · sin
(
longitude · π

180◦

)
(4.8)

Finally, all these values are combined into a 7-tuple in SQL syntax and appended to the
MySQL command string (line 249–258). is cycle repeats for each sample of one LDEM line;
at the end, the MySQL command string (a MySQL query) will be executed on the database.
Aer the script execution, all values of the LDEMfile have been inserted into the corresponding
database table.

16 is information file is distributed as /CATALOG/DSMAP.CAT along with LRO LDEM data. It can be retrieved here:
http://imbrium.mit.edu/CATALOG/DSMAP.CAT

17 All variables wrien in typewriter font and capital leers are PDS parameters, while all variables wrien in type-
writer font and with a preceding $ are defined variables in the PHP script.

65

http://imbrium.mit.edu/CATALOG/DSMAP.CAT

5 C
ha

pt
er

Surface Paern Generation Process

5.1 Anatomy of a Surface Paern

e existing 3D data, which has been produced by importing and conditioning the lunar digi-
tal elevation models (LDEMs) using the technique explained in the previous chapter, is simply
a point cloud of discrete measurements of the height of the Moon’s surface in relation to its
center of mass (COM). Indeed, points do not have a surface or a shape with connected prop-
erties (color, reflectance characterics, texture, albedo, and so on) to represent. ey are just
infinitesimally small markers of locations in space, produced by the sampling of the original
Moon’s surface. is way, they are only an abstraction of the reality, as the measurement den-
sity will have a significant influence on the surface features missed between two successive
measurements. e higher the measurement density, ergo the DEM resolution, the higher the
model’s proximity to reality.

To produce a rendering, a model of the original surface has to be built out of this point cloud,
which contains a representation of the discretized1, realMoon surface. Pursuing the generation
of a closed surface out of this point cloud, the points have to somehow be connected with each
other, probably new data points need to be inserted by interpolation or existing ones have to
be removed.

1 Discretization, in this context, is the procedure of transferring a continuous object into individually perceived (dis-
crete: separate) pieces, which are called data points. e process of discretization always accompanies a loss of
information. e compensation of this information loss between two discrete, adjacent data points is called inter-
polation. If additional data points are constructed beyond the boundaries of the sampled data points, this process is
called extrapolation. Extapolation results are subject to greater uncertainty and oen depend on the chosen extrap-
olation method.

67

5 Surface Paern Generation Process

Figure 5.1 Overview of mesh elements in computer graphics. Source: [112], License: Cre-
ative Commons Aribution-Share Alike 3.0 Unported.

In the field of computer graphics, this process is known as mesh modeling. What has been
named a point before, is called a vertex (plural: vertices; Latin from vertere: to turn, revolve
[114]). A vertex describes a corner or an intersection of a geometric object, and— in the context
of this thesis — one sample point on the real Moon’s surface. Vertices can hold other infor-
mation, such as color or texture, reflectance characteristics and so on. A defined connection
between two vertices is called an edge, while an area surrounded by closed edges is called a
face. A set of faces can build a surface. A mesh stores all of these elements. Picture 5.1 diplays
an overview of all mesh elements.

Having said this, a mesh containing one surface (the Moon’s surface) has to be produced2.
ere are many ways to connect two or more vertices with each other, resulting in many
possible types of polygons. Nevertheless, the used rendering engine, POV-Ray, only supports
meshes, which solely consist of triangles [105, pp. 129 f.]. ere are a lot of approaches for
generating a set of triangles out of a point set; this class of processes is named point set trian-
gulation. One common algorithm is the Delaunay3 triangulation.

e Delaunay triangulation will produce triangles out of a point set in such a way that
no other points of the point set are inside the circumference of any triangle (except the three
corner points of the triangle itsel). is way, all triangles have the maximum possible interior
angle, which is advantageous for computer graphics, since rounding errors are minimized.
Figure 5.2 shows the result of a 2D Delaunay triangulation for an example point set. [109]

2 To be more exact, multiple meshes will be created. is will be explained later.
3 Named aer Boris Nikolaevich Delaunay or Delone (Russian: Бори́с Никола́евич Делоне́; March 15, 1890 – July

17, 1980), Soviet/Russian mathematician. [108]

68

5.1 Anatomy of a Surface Paern

Figure 5.2 Result of a 2D Delaunay triangulation for an example point set. e vertices are
the black filled dots, and the edges are black lines. e gray circles represent the
circumferences of each resulting triangle, while the red filled dots are the center
points of each circumference. Vectorized version of [110] by Mahias Kopsch;
License: Creative Commons Aribution-Share Alike 3.0 Unported.

69

5 Surface Paern Generation Process

Figure 5.3 A triangulated dolphin. Source: [111]; License: Public Domain.

A Delaunay triangulation is also possible in higher dimensions, for example, in 3D space,
where it is defined to produce triangles in such a way that no other point of the point set
is inside any triangle’s circumsphere. However, the 2D Delaunay triangulation is sufficient,
because LDEM points can be triangulated using their regular grid of selenographic coordinates
(see section 3.2). e resulting triangle points are simply interchanged with the corresponding
spatial coordinates in the Mean Earth/Polar Axis (ME/PA) reference frame4 (this is possible
because the original selenographic coordinates are kept within the MySQL database).

4 is approach may violate the conditions of a 3D Delaunay triangulation, since the 2D regular coordinate grid
will be displaced (curved) around a sphere-like object in 3D space, meaning that the distances between the points
will change. Additionally, there is no direct correspondence between the selenographic coordinates in 2D and
the rectangular coordinates in 3D space for this sphere-like object; this is only true for an ideal sphere, since any
coordinate in selenographic coordinates can be expressed asx

y

z

 =

r$cosϑ cosφ

r$cosϑ sinφ

r$sinϑ

 , (5.1)

but for the the Moon’s surface, the deviations from this ideal radius r$ must be taken into account (this is why
a DEM exists). e correspondence between selenographic coordinates and the spatial coordinates in the ME/PA
reference frame could be wrien as x

y

z

 =

(r$+ δ(ϑ, φ)) cosϑ cosφ

(r$+ δ(ϑ, φ)) cosϑ sinφ

(r$+ δ(ϑ, φ)) sinϑ

 , (5.2)

with the discrete function δ(ϑ, φ), which gives the measured elevation difference taken from the DEM for a partic-
ular point located at (ϑ, φ) on the Moon’s surface. But the effect of this consideration is irrelevant for the thesis’
result.

70

5.1 Anatomy of a Surface Paern

Aer triangulation of the point cloud, the mesh and all triangles in it have to be stored in
a POV-Ray file using the scene description language (SDL). A POV-Ray file is a simple text file
with a defined syntax, which will be parsed by POV-Ray. In the following code snippet, only
a segment of a complete POV-Ray file is shown, which is thought to illustrate the syntax to be
used for a mesh:

1 mesh {
2 triangle {
3 <p1_x, p1_y, p1_z>, <p2_x, p2_y, p2_z>, <p3_x, p3_y, p3_z>
4 texture { moon }
5 }
6 triangle {
7 <p1_x, p1_y, p1_z>, <p2_x, p2_y, p2_z>, <p3_x, p3_y, p3_z>
8 texture { moon }
9 }
10 }

is mesh consists of two triangles, which will be defined by three points <pi_x, pi_y,
pi_z>, where i ∈ [1, 2, 3] (pi_x, pi_y and pi_z are just placeholders here; these are float
values in reality). e line texture { moon } inside each triangle object defines the color of
this face for POV-Ray (all faces have the same color).

A global POV-Ray mesh covering the entire lunar surface would be extremely huge. For
this reason, an alternate approach is used: e Moon’s surface is being split into tiles of (5◦ +
2 ε)×(5◦+2 ε) in longitude and latitude. is way, 2 592 surface tiles originate for each LDEM
resolution. Each of these surface tiles represents one POV-Ray mesh, meaning one surface.
Such a surface tile/mesh will be called a surface paern from now on. For a later rendering
only those surface paerns will be included in a POV-Ray rendering, which will be visible in
this rendering. at means that a later rendering showing a continuous Moon’s surface will
consist of several overlapping surface paerns. To ensure that no margins are visible between
two adjacent surface paerns, the meshes have been created with amargin ε, which is ε = 0.5◦

for LDEM resolutions of 4 and 16 px/deg and ε = 0.1◦ at 64 px/deg (these values have been
chosen arbitrarily).

A surface paern (the mesh statement) is stored as a single POV-Ray file. POV-Ray’s SDL
offers the possibility of an include directive (#include), which enables the spliing of large
POV-Ray files. ereby all surface paerns can be stored independently from a main POV-Ray
file, which is later dynamically generated by the Moon Surface Illumination Simulator (MSIS),
and which includes the required surface paerns by referencing their respective files.

71

5 Surface Paern Generation Process

5.2 Surface Paern Generation Process

e surface paerns for a particular LDEM resolution are generated using the
generate_pattern.php PHP script, which is available within the /scripts/ directory
in the MSISF installation path; a printed version is aached to this thesis as appendix B.4. is
script can be run from the command line using the following command:

php generate_pattern.php

Prior to a script execution, the configuration options inside the script must be correctly set:

80 # ===
81 # Configuration of the surface pattern generation process
82 # ===
83

84 # LDEM resolution (integer) to be used (preconfigured for LDEM_4, LDEM_16 and LDEM_64).
85 $LDEM = 64;
86

87 # Path to pattern repository, where all generated patterns will be placed and where
88 # all existing patterns are located (w/o trailing slash)
89 $path_patternDB = ”L:/path/to/pattern-repository”;
90

91 # Path to a temporary directory (w/o trailing slash)
92 $path_tempdir = ”L:/path/to/temp-dir”;
93

94 # Path to the supplied delaunay2D.exe file (w/o trailing slash)
95 $path_delaunayHelper = ”L:/path/to/MSISF-installation/bin”;
96

97 # MySQL connection parameters
98 $mysql_host = ”localhost”; # MySQL server, e.g. ”localhost” or ”localhost:3306”
99 $mysql_db = ””; # MySQL database
100 $mysql_user = ””; # MySQL username for specified database
101 $mysql_pwd = ””; # MySQL password for specified username

e configuration variable $LDEM defines the LDEM resolution for the surface paerns to be
generated; the script assumes that a table named LDEM_[resolution], for example, LDEM_64
for the LDEM resolution of 64 px/deg, exists within the specified database (lines 97–101). is
table must contain the complete data of an entire NASA LRO LOLA LDEM product, which has
been imported using the ldem_mysql_insert.php script (cf. chapter 4) of the MSISF. Addition-
ally, the path to the paern repository ($path_patternDB), to a temporary working directory
($path_tempdir) and to the delaunay2D.exe file ($path_delaunayHepler), which can be found
in the /bin/ directory in the MSISF installation path, must be set.

72

5.2 Surface Paern Generation Process

e paern generation script has been prepared for the LDEM resolutions 4, 16 and
64 px/deg. For the paern generation of other resolutions, the specification of a margin ε

($off) is necessary:

103 # Surface pattern offset (preconfigured for LDEM_4, LDEM_16 and LDEM_64)
104 # This offset specifies the latitude and longitude, which will be added to 5°x5° as
105 # overlap area between the single surface patterns to ensure a closed 3D surface during
106 # rendering/raytracing. For resolutions greater than 64 px/deg, 0.1° should be sufficient.
107 # All values of $off are given in degrees latitude/longitude.
108 switch($LDEM)
109 {
110 case 4:
111 $off = 0.5;
112 break;
113 case 16:
114 $off = 0.5;
115 break;
116 case 64:
117 $off = 0.1;
118 break;
119 default:
120 die(”No valid LDEM dataset selected.”);
121 break;
122 }

If all configuration variables are properly set, the script will connect with the specified
MySQL database (lines 143–147 of the printed version in appendix B.4). e script will then
successively loop through the latitudes and longitudes in steps of 5 degrees (lines 158–321).
First, the script constructs the filename of the surface paern to be generated (line 167); a
surface paern will be named subject to the following scheme:

LDEM_[res]_lat_[lat_start]_[lat_end]_lon_[lon_start]_[lon_end].inc

e script will check if the particular surface paern exists; an existing surface paern will
not be overwrien at any time, the script will skip the generation of this paern instead (lines
170–173).

Subsequently (lines 176–216), the paern generation script will query the database for all
points on the Moon’s surface within the specified area of 5◦ × 5◦ degrees, with a circumfer-
ential margin as specified by $off in the configuration section, using a MySQL spatial query
(see chapter 4). e return values (latitude, longitude and spatial coordinates in the ME/PA
reference frame of each selected point) are stored as a serially indexed array with one entry for
each point (lines 218–230). e pair of selenographic coordinates (latitude, longitude) of each

73

5 Surface Paern Generation Process

selected point will be wrien into a text file with comma-separated values (called a CSV file),
with one line per point (lines 232–234).

A 2D Delaunay triangulation is executed on the CSV file, using the delaunay2D.exe ap-
plication (lines 236–273). is application is a compiled MATLAB script, generated using the
MATLAB Compiler. e original MATLAB script (the file can be found at /src/delaunay2D.m)
consists only of a few lines of code:

1 function delaunay2D(csvfile)
2

3 pattern = csvread([csvfile ’.csv’]);
4 triang_pattern = DelaunayTri(pattern);
5 dlmwrite([csvfile ’_delaunay.csv’], triang_pattern, ’precision’, ’%li’);
6

7 end

e MATLAB script opens the prepared CSV file and reads the latitude/longitude pairs into
its memory. e 2D Delaunay triangulation is being offered by MATLAB with the function
DelaunayTri(). Running the triangulation on the latitude/longitude pairs generates a list of
indices; the MATLAB script writes this list into a new CSV file.

e paern generation script opens this file aer the finishing of delaunay2D.exe; each line
of this CSV file represents a triangle by specifying the line numbers of three latitude/longitude
pairs of the first CSV file. For each triangle specified this way, the paern generation script will
create a triangle statement in the POV-Ray SDL syntax (lines 275–308). e latitude/longitude
pairs are replaced with their corresponding rectangular coordinates in the ME/PA reference
frame, as stored in the serially indexed array.

Aer assembling all triangle statements, the surface paern is wrien to its paern file
within the paern repository (lines 310 and 311). Aer clearing the local loop variables and
temporary files (lines 312–321), one loop cycle is complete and the script begins with a the gen-
eration of the next surface paern, if applicable. Once all surface paerns have been generated,
the script exits.

5.3 Storage of the Surface Paerns and POV-Ray Mesh
Compilation

All surface paerns of the common resolution are stored in a subfolder at the paern repository
path, which is named aer the resolution number. e paern repository itself can be located
outside the MSISF installation directory, for example, on a mass storage with sufficient storage
size. is way, the MSISF can be installed to the standard Windows program files path, while
the larger paern repository can be placed on a drive with enough memory.

74

5.3 Storage of the Surface Paerns and POV-Ray Mesh Compilation

e MSIS will later generate a main POV-Ray file, which contains all rendering scene infor-
mation. is POV-Ray script also includes all needed surface paerns. An example of such a
POV-Ray file is the following:

1 #version 3.7;
2

3 #declare Orange = rgb <1,0.5,0>;
4 #declare Red = rgb <1,0,0>;
5 #declare Yellow = rgb <1,1,0>;
6 #declare moon = texture
7 {
8 pigment { color rgb<0.8, 0.8, 0.8> }
9 finish
10 {
11 ambient 0.0
12 diffuse 0.8
13 }
14 }
15

16 global_settings
17 {
18 charset utf8
19 assumed_gamma 1.0
20 }
21

22 camera
23 {
24 perspective
25 location <125.340753, 18.2633239, 1793.96436>
26 right <0.2277842, -1.5668627, 0.0000365>
27 up <0.8009921, 0.1164587, 0.5872385>
28 direction <0.4600632, 0.0668672, -0.6407861>
29 }
30

31 light_source
32 {
33 <53424167.691091, 137263136.289498, 3278056.17946521>
34 color rgb<1, 1, 1>
35 looks_like
36 {
37 sphere
38 {
39 0, 1000
40 pigment { rgbt 1 }
41 hollow
42 interior
43 {

75

5 Surface Paern Generation Process

44 media
45 {
46 emission 1
47 density
48 {
49 spherical
50 density_map
51 {
52 [0 rgb 0]
53 [60 Orange]
54 [80 Red]
55 [100 Yellow]
56 }
57 scale 1000
58 }
59 }
60 }
61 }
62 }
63 }
64

65 #include ”L:\path\to\pattern-repository\64\pattern_LDEM_64_lat_70_75_lon_30_35.inc”
66 #include ”L:\path\to\pattern-repository\64\pattern_LDEM_64_lat_75_80_lon_30_35.inc”
67 #include ”L:\path\to\pattern-repository\64\pattern_LDEM_64_lat_75_80_lon_25_30.inc”

Line 1 declares the POV-Ray version the POV-Ray file is wrien for. It follows a declaration
of the used colors in lines 3–14; here is also the declaration of the surface color for the virtual
Moon: It is set to RGB(0.8, 0.8, 0.8), since this value produces reasonable results. If somebody
needs to change the color or other appearance seings (reflectance, for example) of all surface
paerns, he would only have to edit these lines.

Lines 22–29 implement the camera with their MSIS-calculated geometry, as well as the posi-
tion of the Sun (the “light source”) in lines 31–63. With the lines 65–67, three surface paerns
have been included in this example rendering.

76

5.3 Storage of the Surface Paerns and POV-Ray Mesh Compilation

77

6 C
ha

pt
er

Moon Surface Illumination Simulator
(MSIS)

6.1 Soware Architecture

e Moon Surface Illumination Simulator (MSIS) is the core application and main user inter-
face of the Moon Illumination Simulation Framework (MSISF). e MSIS is wrien in C# using
Microso Visual Studio 2010 Ultimate as integrated development environment (IDE). It is de-
signed using the programming paradigm of object-oriented programming. As such, the MSIS
consists of several classes for distinct tasks. e main classes are the Program, Simulation,
Spacecraft and SpacecraftState class. All other classes are designed as helper classes.

e program flow is controlled by the Program class. First, it initiates the parsing and val-
idation process for the user-given command line arguments. Aer all arguments have been
successfully checked, it outputs a configuration overview and initiates the simulation and ren-
dering process. e Program class encapsulates all operations within try-catch structures and
addresses the exceptions thrown by all sub-processes.

e entire simulation process is mapped into the Simulation class, which contains and
maintains all simulation and rendering parameters, for example, the width and height of the
image(s) to be generated, the LDEM resolution to be used, the file system paths to the POV-

Chapter Image: An early “Moon Surface Simulator”. Original image description: Apollo LOLA project. Test subject
siing at the controls: Project LOLA or Lunar Orbit and Landing Approach was a simulator built at Langley to study
problems related to landing on the lunar surface. ©1961 NASA Langley Research Center (NASA-LaRC), License:
Public Domain. Available at http://mediaarchive.ksc.nasa.gov/detail.cfm?mediaid=41893.

79

http://mediaarchive.ksc.nasa.gov/detail.cfm?mediaid=41893

6 Moon Surface Illumination Simulator (MSIS)

Ray executable, the rendering output directory and the location of the paern repository. In
addition, the Simulation class instantiates a new object of the Spacecraft class for each given
spacecra state in the batch file or fixed state operationmode. If the operationmode specifying
the spacecra orbit using a set of Keplerian elements or state vectors is used, the Simulation
class will only instantiate one Spacecraft object, but with information regarding its orbit and
storing the simulation time(s) to be rendered.

e Spacecraft class contains information about the initial location and orientation of the
spacecra, as well as information regarding the spatio-temporal variation of these values. In
case of the batch file or fixed state operation modes, an object of the Spacecraft class only
contains information about the location and orientation of the spacecra; all other parameters
accounting for the variation of the location and orientation are simply set to neutral values.

Aer all parameters of the Simulation class have been properly set, the simulation and
rendering process can be initiated by calling the Simulation.doCalculations()method. e
MSIS will now generate one object of the SpacecraftState class per rendering to be done. e
SpacecraftState class is derived from the Spacecraft class and addresses the calculation and
application of the spatio-temporal alterations of location and orientation for a given simulation
time, based on the initial values given in the properties of a Spacecraft object. It will also
calculate the Sun’s position within the ME/PA reference frame for the given simulation time.

Subsequently, the Simulation class calls the Dynamical Surface Paern Selection Algorithm
(DSPSA, see chapter 8), which is implemented itself as a method within the Simulation class,
for this particular SpacecraftState object. e DSPSA determines the surface paerns re-
quired to generate the particular rendering; with this information, the Simulation class assem-
bles a POV-Ray scene file, containing all information regarding camera location, orientation
and geometry as well as the Sun’s position for the certain simulation time, surface paerns to
be used and some general scene information.

At the same time, the Simulation class also generates the XML meta information file (cf.
chapter 9), containing general rendering information as well as information regarding the
pixel-wise local solar illumination angle. Using the just generated POV-Ray scene file, the
MSIS invokes the POV-Ray rendering engine (pvengine64.exe) and instructs it to render this
file. Additionally, the Simulation class initiates the generation of one additional image with
an overlay showing a visualization of the rendering meta information (so-called rendering an-
notation), if the user called the MSIS with the command-line option --rendering-annotation.

With the completion of all the necessary renderings, the MSIS execution also finishes. Dur-
ing theMSIS execution, the above explainedmain classesmake use of several specialized helper
classes. One of these classes is the tools class, which contains methods for parsing and eval-
uating the user-given command-line arguments, time conversion from modified Julian dates

80

6.2 Selected Components of the MSIS

(UTC) to Gregorian dates, some standard math operations (radians to degrees and vice versa,
conversion factors, angle normalization, etc.) and an iteration algorithm for solving theKepler
equation for the eccentric anomaly E.

A second important helper class is the KeplerOrbit class, which provides methods for the
position determination according to a particular simulation time based on a given set of Ke-
plerian elements or state vectors. For this purpose, it also contains an algorithm for the con-
version of state vectors to Keplerian elements. All other helper classes implement mathemat-
ical constructs or operators like quaternions (Quaternion and RotationQuaternion class) and
vectors (Vector2D and Vector3D class).

e source code of the MSIS application has been documented in-code; a documentation
(available at /doc/MSIS_code_documentation/) has been compiled into the HTML format us-
ing doxygen. e following sections will discuss selected passages of the MSIS code, which
have a significant importance to the functional principle of the MSIS from a global perspective,
or where an implementation seems not to be self-evident. Two algorithms with a substantial
amount of theoretical preparatory work, the Dynamical Paern Selection Algorithm (DSPSA)
and the method for determining the local solar illumination angle, have been outsourced into
two separate chapters, chapters 8 and 9, respectively.

6.2 Selected Components of the MSIS

6.2.1 Determination of the Sun’s Position Using NASA NAIF SPICE

To produce realistically illuminated renderings of the Moon’s surface, knowledge about the
Sun’s position within the Mean Earth/Principal Axis (ME/PA) reference frame for a given sim-
ulation time is indispensable. Because an original implementation for finding the Sun’s accu-
rate position is very demanding using astrodynamical calculus, the MSIS will use a free and
open source, ready-to-use toolkit for astrodynamics, which is called SPICE (abbreviation for
Spacecra Planet Instrument C-matrix Events). e SPICE toolkit is offered by NASA’s Naviga-
tion and Ancillary Information Facility (NAIF), which belongs to the Jet Propulsion Laboratory
(JPL) at the California Institute of Technology (Caltech) in the city of Pasadena, California.

e SPICE toolkit is offered in many programming languages, including C/C++, FORTRAN,
IDL andMATLAB. Since theMSIS is developed in C#, it seems natural to use the C/C++ version
of SPICE, which is also called CSPICE. Unfortunately, CSPICE does not directly integrate into a
C# application1. Because only a few calculations by CSPICE are needed for this thesis, a helper

1 At least a C# wrapper would be needed to use CSPICE in C# directly. Another possibility would be a complete
rewrite to C#, but this would be very time-consuming and maintenance intensive.

81

6 Moon Surface Illumination Simulator (MSIS)

function for the CSPICE interaction has been wrien in C++, which is compiled as a dynamic
link library (a *.dll file), which can be embedded (“linked”) into the C# program. is is only
possible because a fixed algorithm with only one input variable (the time) will be used.

CSPICE offers a very simple way for the accurate calculation of the Sun’s position within
the ME/PA reference frame for a given time. Only a few lines of C++ code lead to the desired
result:

1 extern ”C” __declspec(dllexport) void __stdcall
2 calculateSunPosition(char* utc, double* x, double* y, double* z)
3 {
4 furnsh_c(”../kernels/moon_pa_de421_1900-2050.bpc”);
5 furnsh_c(”../kernels/moon_080317.tf”);
6 furnsh_c(”../kernels/moon_assoc_me.tf”);
7 furnsh_c(”../kernels/pck00009.tpc”);
8 furnsh_c(”../kernels/naif0009.tls”);
9 furnsh_c(”../kernels/de421.bsp”);
10

11 SpiceDouble et;
12 utc2et_c(utc, &et);
13

14 SpiceDouble ptarg[3];
15 SpiceDouble lt;
16 spkpos_c(”SUN”, et, ”MOON_ME”, ”NONE”, ”MOON”, ptarg, <);
17

18 *x = ptarg[0] * 1000;
19 *y = ptarg[1] * 1000;
20 *z = ptarg[2] * 1000;
21

22 kclear_c();
23 }

Listing 6.1 Implementation of the Sun position calculation using CSPICE in C++.

At the beginning, data about the positions, orientations, sizes and shapes of celestial bod-
ies, reference frames, times, astrodynamical constants, etc. pp. must be available to SPICE.
Such data is named ancillary data and is either stored in text or binary files, which are called
kernels. Every kernel has a particular purpose; which kernels to include in an original appli-
cation depends on the individual case. Depending on their contents, kernels are named SPK
(ephemeris), PcK (physical constants, shape and orientation of celestial bodies), FK (reference
frames) or LSK (leapseconds) kernels (there are more kernel types, but these are the ones rel-
evant for this thesis). [99, pp. 24 ff.]

Kernels in CSPICE can be loaded using the furnsh_c function. In the context of calcu-
lating the Sun’s position within the ME/PA reference frame, six kernels have to be loaded.

82

6.2 Selected Components of the MSIS

First, SPICE demands to know about the orientation of the Moon. e binary PcK kernel
moon_pa_de421_1900-2050.bpc contains high-accuracy lunar orientation data for the years
1900–2050 (line 4 of code listing 6.1). In conjunction with the text FK kernels moon_080317.tf
and moon_assoc_me.tf (lines 5 and 6), which contain information regarding the ME/PA refer-
ence frame to be used, SPICE is able to orient the Moon within this frame.

Next, SPICE needs to know about the overall physical constants, orientation, size and shape
of the natural bodies of the solar system; information which is loaded into SPICE using
the text PcK kernel pck00009.tpc (line 7). Additionally, SPICE needs to know about intro-
duced leapseconds for time calculations. is information is stored in the text LSK kernel
naif0009.tls with the last leapsecond entry at December 31, 20082 (line 8). Last, accurate
data about positions of the celestial bodies in our solar system is required. Such data is called
ephemerides and is produced out of complex astrodynamical models. e DE421 ephemerides3

are one of the most recent ephemerides available; they are stored in the binary SPK kernel
de421.bsp (line 9).

Aer loading all these kernels, SPICE is ready to calculate the Sun’s position. Prior to this,
the time given to the function as ISO 8601 UTC string has to be converted into ephemeris time
(ET), because SPICE calculates in ET internally (lines 11–12). Aer this time conversion, the
position of the Sun can be calculated using one single function call (lines 14–16):

spkpos_c(”SUN”, et, ”MOON_ME”, ”NONE”, ”MOON”, ptarg, <);

e CSPICE spkpos_c function returns a position vector of a target body relative to an observ-
ing body. e first argument specifies the target body name, the second the time of observation
at the observer’s location. MOON_ME specifies the ME/PA reference frame to be used; NONE indi-
cates that no corrections for light time or stellar aberration shall be applied to the result. e
fih argument specifies the observer, which for this thesis is the Moon. e following two ar-
guments specify the output variables; ptarg will contain the position of the Sun in the ME/PA
reference frame in the unit of km and lt the one-way light time from the observer position to
the target body (this information is not needed by the MSIS). [98]

2 A leapsecond is a single second, which is added or subtracted to the Coordinated Universal Time (UTC) to adjust
the time scale to stay close to mean solar time (realized as Universal Time — UT1). e timing for the introduction
of a leapsecond is unpredictable, since a leapsecond compensates the effects of the variation in the Earth’s rotation
rate. is timing is scheduled by the International Earth Rotation and Reference Systems Service (IERS), which
announces a leapsecond if it is foreseeable that UTC will differ more than 0.9 seconds from UT1 any time soon. is
way, on one hand, our everyday UTC time scale is sure to differ no more than 0.9 seconds, while other the other
hand, an atomic time-precise time unit, the fixed-length SI second, is available.

3 “DE” stands for Jet Propulsion Laboratory Development Ephemeris. ey are produced by the Jet Propulsion Labora-
tory (JPL) in Pasadena, California using complex astrodynamical models of the Solar System. e following number
designates the model which has been used. Different DE can cover different ranges of time validity.

83

6 Moon Surface Illumination Simulator (MSIS)

Subsequently, the function will store the position of the Sun in the variables x, y and z with
their obvious meanings (lines 18–20). Aerwards, the values of these variables will be accessed
by the MSIS. Finally, all loaded SPICE kernels will be unloaded and the SPICE session will be
cleared using the kclear_c function of CSPICE (line 22).

6.2.2 Position Calculation Using a Set of Keplerian Orbit Elements

One essential part of the MSIS operation modes specifying a spacecra orbit is the calculation
of the spacecra position at a certain simulation time using a set of Keplerian elements. Re-
quired for the computation of a position vector r(t) [AU] and the velocity vector ṙ(t) [AUd], if
applicable, is a traditional set of Keplerian elements, which consists of the semi-major axis
a [m], eccentricity e [1], argument of periapsis ω [rad], longitude of ascending node (LAN)
Ω [rad], inclination i [rad] and the mean anomalyM0 = M(t0) [rad] at an epoch t0 [JD] as well
as the considered epoch (simulation time) t [JD], if different from t0.

e spacecra’s position vector r(t) and the velocity vector ṙ(t) can then be calculated using
the following algorithm4:

1. Calculate or set M(t):

a) If t = t0: M(t) = M0.

b) If t ̸= t0:5 Determine the time difference ∆t in seconds and the mean anomaly
M(t) with

∆t = 86 400(t− t0), M(t) = M0 +∆t

√
µ

a3
, (6.1)

whereas µ = µ$ = 4.902 801 076 · 1012 (±8.1 · 104) m3

s2 for the Moon as central
body. Normalize M(t) to be in [0, 2π).

2. Solve Kepler’s EquationM(t) = E(t)− e sinE for the eccentric anomaly E(t) with an
appropriate method numerically, e.g. the Newton–Raphson method6:

f(E) = E − e sinE −M (6.2)

Ej+1 = Ej −
f(Ej)
d

dEj
f(Ej)

= Ej −
Ej − e sinEj −M

1− e cosEj
, E0 = M (6.3)

4 References: Equations 6.1–6.3 and 6.5–6.7: [4, pp. 22–27]; Equations 6.8 and 6.9: [11, p. 26]; Equation 6.4: [19];
value for µ$: [78, p. 305].

5 Be aware that orbit elements change over time, so be sure to use one set of Orbit Elements given for a certain epoch
t0 only for a small time interval (compared to the rate of changes of the Orbit Elements) around t0.

6 Argument (t) omied for the sake of simplicity.

84

6.2 Selected Components of the MSIS

3. Obtain the true anomaly ν(t) from

ν(t) = 2 · atan2
(√

1 + e sin
E(t)

2
,
√
1− e cos

E(t)

2

)
. (6.4)

4. Use the eccentric anomaly E(t) to get the distance to the central body with

rc(t) = a(1− e cosE(t)). (6.5)

5. Obtain the position and velocity vector o(t) and ȯ(t), respectively, in the orbital frame
(z-axis perpendicular to orbital plane, x-axis pointing to periapsis of the orbit):

o(t) =

ox(t)

oy(t)

oz(t)

 = rc(t)

cos ν(t)

sin ν(t)

0

 (6.6)

ȯ(t) =

ȯx(t)

ȯy(t)

ȯz(t)

 =

√
µa

rc(t)

 − sinE√
1− e2 cosE

0

 (6.7)

6. Transform o(t) and ȯ(t) to the inertial frame7 in bodycentric (in case of the Moon as
central body: selenocentric) rectangular coordinates r(t) and ṙ(t) with the rotation ma-
trices8 Rx(φ) and Rz(φ) using the transformation sequence

r(t) = Rz(−Ω)Rx(−i)Rz(−ω)o(t)
oz(t)=0
=======ox(t)(cosω cosΩ− sinω cos i sinΩ)− oy(t)(sinω cosΩ + cosω cos i sinΩ)

ox(t)(cosω sinΩ− sinω cos i cosΩ) + oy(t)(cosω cos i cosΩ− sinω sinΩ)

ox(t)(sinω sin i) + oy(t)(cosω sin i)


(6.8)

ṙ(t) = Rz(−Ω)Rx(−i)Rz(−ω)ȯ(t)
ȯz(t)=0
=======ȯx(t)(cosω cosΩ− sinω cos i sinΩ)− ȯy(t)(sinω cosΩ + cosω cos i sinΩ)

ȯx(t)(cosω sinΩ− sinω cos i cosΩ) + ȯy(t)(cosω cos i cosΩ− sinω sinΩ)

ȯx(t)(sinω sin i) + ȯy(t)(cosω sin i)

 .

(6.9)

7 With reference to the central body (Moon) and themeaning of i,ω andΩ to its reference frame (theME/PA reference
frame).

8 Rx(φ) =

1 0 0

0 cosφ − sinφ

0 sinφ cosφ

, Rz(φ) =

cosφ − sinφ 0

sinφ cosφ 0

0 0 1


85

6 Moon Surface Illumination Simulator (MSIS)

7. To obtain the position and velocity vector r(t) and ṙ(t), respectively, in the units AU and
AU/d, calculate

r(t)[AU] =
r(t)

1.495 978 706 91 · 1011
(6.10)

ṙ(t)[AU/d] =
ṙ(t)

86 400 · 1.495 978 706 91 · 1011
. (6.11)

is algorithm has been implemented as method KeplerOrbit.getPosition() into the
MSIS. Since only a position vector is needed as output, the calculations of the velocity vec-
tor are cut away. All Keplerian elements, which are input parameters, are properties of the
KeplerOrbit class.

1 public Vector3D getPosition(double t)
2 {
3 double M = 0;
4 double dt = 0;
5 double E = 0;
6 double nu = 0;
7 double r_c = 0;
8 Vector3D o = new Vector3D();
9 Vector3D r = new Vector3D();
10

11 if (t == this._epoch)
12 {
13 M = this._M0;
14 }
15 else
16 {
17 dt = 86400 * (t - this._epoch);
18 M = this._M0 + dt * Math.Sqrt((_GM) / (Math.Pow(this._a, 3)));
19 M = tools.normalizeAngle(M);
20 }
21

22 E = tools.solveKeplerForE(M, this._e);
23 nu = 2 * Math.Atan2(Math.Sqrt(1 + this._e) * Math.Sin(E / 2), Math.Sqrt(1 - this._e)
24 * Math.Cos(E / 2));
25 r_c = this._a * (1 - this._e * Math.Cos(E));
26 o = r_c * new Vector3D(Math.Cos(nu), Math.Sin(nu), 0);
27

28 r = new Vector3D(
29 o.x() * (Math.Cos(this._omega) * Math.Cos(this._Omega) - Math.Sin(this._omega)
30 * Math.Cos(this._i) * Math.Sin(this._Omega)) - o.y() * (Math.Sin(this._omega)
31 * Math.Cos(this._Omega) + Math.Cos(this._omega) * Math.Cos(this._i)
32 * Math.Sin(this._Omega)),

86

6.2 Selected Components of the MSIS

33 o.x() * (Math.Cos(this._omega) * Math.Sin(this._Omega) - Math.Sin(this._omega)
34 * Math.Cos(this._i) * Math.Cos(this._Omega)) + o.y() * (Math.Cos(this._omega)
35 * Math.Cos(this._i) * Math.Cos(this._Omega) - Math.Sin(this._omega)
36 * Math.Sin(this._Omega)),
37 o.x() * (Math.Sin(this._omega) * Math.Sin(this._i)) + o.y()
38 * (Math.Cos(this._omega) * Math.Sin(this._i)));
39

40 return r;
41 }

Listing 6.2 Implementation of the spacecra position calculation using Keplerian elements
into the MSIS.

6.2.3 State Vector Conversion to Keplerian Elements

Internally, the MSIS will work with Keplerian elements to calculate the spacecra position,
if an operation mode specifying a spacecra orbit around the Moon is used. As the MSIS
also supports the input of a set of state vectors (position vector r(t) [m] and velocity vector
ṙ(t) [ms]), a conversion to Keplerian elements is necessary. Given such a set of state vectors,
a conversion to Keplerian elements (semi-major axis a [m], eccentricity e [1], argument of
periapsis ω [rad], longitude of ascending node (LAN) Ω [rad], inclination i [rad] and the mean
anomalyM0 = M(t0) [rad] at the epoch of validity for the given state vectors) can be achieved
using the following algorithm9:

1. Preparations:

a) Calculate orbital momentum vector h:

h = r× ṙ (6.12)

b) Obtain the eccentricity vector e from

e =
ṙ× h

µ
− r

∥r∥
(6.13)

with standard gravitational parameter µ = µ$ = 4.902 801 076 · 1012 (±8.1 ·
104) m3

s2 for the Moon as central body.

9 References: Equations 6.12 and 6.22: [4, p. 28]; Eq. 6.13: [15]; Eq. 6.14: [16]; Eq. 6.15 [19]; Eq. 6.16: [14]; Eq. 6.17:
[18]; Eq. 6.18: [17]; Eq. 6.19: [16]; Eq. 6.20 [13]; Eq. 6.21: [11, p. 26]; Value for µ$: [78, p. 305].

87

6 Moon Surface Illumination Simulator (MSIS)

c) Determine the vector n pointing towards the ascending node and the true anomaly
ν with

n = (0, 0, 1)T × h = (−hy, hx, 0)
T (6.14)

ν =

arccos ⟨e,r⟩
∥e∥∥r∥ for ⟨r, ṙ⟩ ≥ 0

2π − arccos ⟨e,r⟩
∥e∥∥r∥ otherwise.

(6.15)

d) Calculate the eccentric anomaly E:

E = arccos
∥e∥+ cos ν

1 + ∥e∥ cos ν
(6.16)

2. Calculate the orbit inclination i by using the orbital momentum vector h:

i = arccos
hz

∥h∥
(6.17)

(hz is the third component of h).

3. e orbit eccentricity e is simply the magnitude of the eccentricity vector e:

e = ∥e∥ (6.18)

4. Obtain the longitude of the ascending node Ω and the argument of periapsis ω:

Ω =

arccos nx

∥n∥ for ny ≥ 0

2π − arccos nx

∥n∥ for ny < 0
(6.19)

ω =

arccos ⟨n,e⟩
∥n∥∥e∥ for ez ≥ 0

2π − arccos ⟨n,e⟩
∥n∥∥e∥ for ez < 0

(6.20)

5. Compute the mean anomaly M with help of Kepler’s Equation from the eccentric
anomaly E and the eccentricity e:

M = E − e sinE (6.21)

6. Finally, the semi-major axis a is found from the expression

a =
1

2
∥r∥ − ∥ṙ∥2

µ

. (6.22)

88

6.2 Selected Components of the MSIS

is algorithm has been implemented as an overloaded class constructor of the KeplerOrbit
class into the MSIS.

1 public KeplerOrbit(Vector3D r, Vector3D dr)
2 {
3 Vector3D h = r % dr;
4 Vector3D ev = ((dr % h) / _GM) - (r / r.norm());
5 Vector3D n = new Vector3D(0, 0, 1) % h;
6 double nu = 0;
7

8 if (r * dr >= 0)
9 {
10 nu = Math.Acos((ev * r) / (ev.norm() * r.norm()));
11 }
12 else
13 {
14 nu = (2*Math.PI - Math.Acos((ev * r) / (ev.norm() * r.norm())));
15 }
16

17 double E = Math.Acos((ev.norm() + Math.Cos(nu)) / (1 + (ev.norm() * Math.Cos(nu))));
18 double i = Math.Acos(h.z()/h.norm());
19 double e = ev.norm();
20 double Omega = 0;
21

22 if (n.y() >= 0)
23 {
24 Omega = Math.Acos(n.x() / n.norm());
25 }
26 else
27 {
28 Omega = 2*Math.PI - Math.Acos(n.x() / n.norm());
29 }
30

31 double omega = 0;
32

33 if (ev.z() >= 0)
34 {
35 omega = Math.Acos((n*ev) / (n.norm()*ev.norm()));
36 }
37 else
38 {
39 omega = 2*Math.PI - Math.Acos((n * ev) / (n.norm() * ev.norm()));
40 }
41

42 double M = E - (e * Math.Sin(E));
43 double a = 1 / ((2/r.norm()) - (Math.Pow(dr.norm(),2)/_GM));

89

6 Moon Surface Illumination Simulator (MSIS)

44

45 this.setKeplerElements(a, e, omega, Omega, i, M);
46 }

Listing 6.3 Implementation of the conversion from state vectors to Keplerian elements into
the MSIS.

6.2.4 Time Calculations

e simulation timepoints are usually given as modified Julian dates (MJD). For the calcula-
tion of the Sun’s position with SPICE, the declaration of an ISO 8601 UTC string is necessary.
Additionally, the MSIS displays dates, which are given as modified Julian dates, as Gregorian
dates for verification purposes at the beginning of the rendering process. is should serve to
reduce the possible sources of trouble. Jean Meeus presents an algorithm to convert a given
Julian date into a Gregorian date [70, p. 63]. is algorithm has been slightly modified to con-
vert modified Julian dates (MJD) to Gregorian dates, instead of Julian dates (JD); this is actually
just a simple addition of the given MJD and 2 400 000.5. Additionally, the algorithm has been
customized to return not only the day, but also the time.

e MJD to Gregorian date conversion has been implemented as static method
tools.MJDtoUTC() into the MSIS10:

1 public static DateTime MJDtoUTC(double MJD)
2 {
3 decimal JD = Convert.ToDecimal(MJD) + 2400000.5m;
4 decimal T = JD + 0.5m;
5 decimal Z = Decimal.Truncate(T);
6 decimal F = T - Z;
7 decimal A;
8

9 if (Z < 2299161m)
10 {
11 A = Z;
12 }
13 else
14 {
15 decimal alpha = Decimal.Truncate((Z - 1867216.25m) / 36524.25m);
16 A = Z + 1 + alpha - Decimal.Truncate(alpha / 4);
17 }

10 Please note that this code will not address leapseconds, as they are not relevant to the accuracy needed by the MSIS.
However, if an accurate conversion to UTC is necessary, one must take the leapseconds into account.

90

6.2 Selected Components of the MSIS

18

19 decimal B = A + 1524m;
20 decimal C = Decimal.Truncate((B - 122.1m) / 365.25m);
21 decimal D = Decimal.Truncate(365.25m * C);
22 decimal E = Decimal.Truncate((B - D) / 30.6001m);
23 int day = Convert.ToInt32(Decimal.Truncate(B - D - Decimal.Truncate(30.6001m * E) + F));
24 int month;
25 int year;
26

27 if (E < 14m)
28 {
29 month = Convert.ToInt32(E - 1m);
30 }
31 else if (E == 14m || E == 15m)
32 {
33 month = Convert.ToInt32(E - 13m);
34 }
35 else
36 {
37 month = 0;
38 }
39

40 if (month > 2m)
41 {
42 year = Convert.ToInt32(C - 4716m);
43 }
44 else if (month == 1m || month == 2m)
45 {
46 year = Convert.ToInt32(C - 4715m);
47 }
48 else
49 {
50 year = 0;
51 }
52

53 decimal h = F * 24m;
54 int hour = Convert.ToInt32(Decimal.Truncate(h));
55 decimal m = (h - Decimal.Truncate(h)) * 60m;
56 int minute = Convert.ToInt32(Decimal.Truncate(m));
57 decimal s = (m - Decimal.Truncate(m)) * 60m;
58 int second = Convert.ToInt32(Decimal.Truncate(s));
59

60 return new DateTime(year, month, day, hour, minute, second);
61 }

Listing 6.4 MSIS implementation of the modified Julian date to Gregorian date/time algo-
rithm, based on Jean Meeus’ algorithm [70, p. 63].

91

6 Moon Surface Illumination Simulator (MSIS)

6.3 User Interface and MSIS Invocation

6.3.1 General Information

e MSIS is a non-interactive command-line application, which must be called with appro-
priate arguments. ese arguments will specify how the MSIS will operate. In general, there
are four distinct operation modes, which can be divided into two separate groups: e first
group requires the user to pre-calculate the spacecra position and orientation, while the sec-
ond group offers the possibility of specifying an orbit around the Moon. In this case, the actual
spacecra position and orientation will be determined using the temporal evolution of a set of
Keplerian elements for each simulation timepoint.

e operation modes “batch file” and “fixed state” do fit in the first group. A considera-
tion of landing trajectories is possible in this mode, as a set of Keplerian elements cannot
reflect spacecra maneuvers (e.g. accelerations/deceleration caused by thrusters), which will
likely be a primary simulation circumstance. e second group contains the operation modes
“Keplerian elements” and “state vectors”, but which are virtually the same, since the MSIS
converts given state vectors to a set of Keplerian elements internally.

All possible command-line arguments and their respective meanings are listed in appendix
A. e different operation modes are determined by the MSIS by evaluating the user-given
command-line arguments. ere are one or more mandatory arguments for each operation
mode, as well as forbidden and optional ones. Table 6.1 gives an overview of all command-line
arguments relating to a certain operation mode. All other listed arguments in appendix A are
optional for all operation modes.

Independent from the operation mode used, the MSIS will automatically calculate the posi-
tion of the Sun within the ME/PA reference frame from the given simulation time. Regardless
of how the spacecra position has been determined (automatically or pre-calculated), the MSIS
will set the camera to the given spacecra position. e camera will be rotated from its default
view orientation using the specified rotation quaternion (see chapter 7 for more information
regarding the spacecra/camera orientation), if applicable. e MSIS will always generate a
XML meta information file along with a rendering (cf. chapter 9).

A short description of the four operation modes follows; please note the additional informa-
tion in section 2.3.2.

6.3.2 Batch File Operation Mode

e batch file operation mode is the primary operation mode the MSIS has been designed for.
In this mode, a user-specified text file containing a set of so-called fixed spacecra states per one
text line will be opened by the application. One line consists of the modified Julian date MJD in

92

6.3 User Interface and MSIS Invocation

K
ep
le
r
Se

t

St
at
e
V
ec

to
rs

Fi
xe

d
St
at
e

B
at
ch

Fi
le

--attitude (-a) d d % %

--attitude-transition (-at) d d % %

--batch-file % % % "

--epoch (-e) " " % %

--fixed-state % % " %

--kepler-set (-k) " % % %

--state-vectors (-s) % " % %

--time (-t)

" " % %--times (-tt)

--time-interval

Table 6.1 Overview of the required command-line arguments for the different operation
modes of the MSIS. All arguments marked with" are mandatory for the respec-
tive operation mode, while all arguments marked with % are not allowed and
those withd are optional. All additional arguments are optional and have been
documented in appendix A.

UTC time, the spacecra’s rectangular position coordinates rx, ry, rz in the ME/PA reference
frame and the four components of the rotation quaternion qx, qy, qz and q0, whereas q0 is the
real part and qx, qy and qz are the imaginary parts of the quaternion. All values are separated
by at least one whitespace or tab:

MJD rx ry rz qx qy qz q0

All numeric values can be given in decimal or scientific notation (plus sign is optional), even
intermixed in one line. An example of a batch file could be:

55289 +2.00000E+006 +2.00000E+006 +0 +0.0E+0 0 +3.82683E-001 +9.23879E-001
5.5289E4 -2000000 2000000 0 0 +0.00000E+000 -9.23879E-001 +3.82683E-001
55289 +2.0E6 2E6 0.00 -2.39117e-001 +9.90457E-2 +3.69643e-1 +8.92399E-001

is MSIS call will generate one rendering per line. By spliing the input batch file into
several pieces, distributed computing of a rendering series is possible, utilizing the power of
more than a single machine.

93

6 Moon Surface Illumination Simulator (MSIS)

6.3.3 Fixed State Operation Mode

e fixed state operation mode is very similar to the batch file operation mode. Instead of
specifyingmultiple spacecra states in a separate batch file, the user will specify one spacecra
state directly at the command-line using the --fixed-state argument. e fixed state contains
the same information as one line of a batch file, but the single values are comma separated and
enclosed with curly braces:

--fixed-state {MJD,rx,ry,rz,qx,qy,qz,q0}

is operation mode is intended for external invoking, for example, out of an external ap-
plication or script. Additionally, this mode can be used for previewing or rendering a given
spacecra state out of a batch file.

6.3.4 Keplerian Elements Operation Mode

By specifying a set of Keplerian elements, the user enters the Keplerian elements operation
mode. e MSIS will automatically calculate the actual spacecra’s position for the given
simulation timepoint(s). However, if the user provides no information about the spacecra
orientation using the --attitude command-line argument, the spacecra will point into the
direction of nadir. If a user-specified rotation quaternion and multiple simulation timepoints
are given, the spacecra will always look into the same direction for all renderings, unless the
user specifies a spacecra rotation rate using the --attitude-transition switch.

is mode assumes a stable orbit to be given by the user.

6.3.5 State Vectors Operation Mode

e usage of state vectors (consisting of one position and one velocity vector) is an alternative
way of defining a spacecra orbit. e MSIS will internally work with a set of Keplerian ele-
ments, so a given state vector will be converted. All other information given for the Keplerian
elements operation mode also applies for this mode.

6.4 Example Usage

Alteration of the rendering geometry

MSIS.exe --fixed-state {55289,2E6,2E6,0,0,0,3.826834323650898E-1,▼
9.238795325112867E-1} --width 1920 --height 1080 --fov 45 --res 16

94

6.4 Example Usage

e aboveMSIS call will produce one rendering in full HD resolution (1920× 1080 px), using
a field of view of 45 degrees and an LDEM resolution of 16 px/deg.

Batch file operation mode with customized POV-Ray path

MSIS.exe --batch-file ”../input/test-scenarios.tab” --pov-path ▼
”P:\Program Files\POV-Ray\3.7\bin” --batch -f 90 -r 64 -w 1900 -h 1200

With these command-line arguments, theMSISwill open the batch file test-scenarios.tab
and produce as many renderings as the batch file consists of, using a camera field of view of 90
degrees, an LDEM resolution of 64 px/deg and a rendering size of 1900× 1200 px. Additionally,
the user specifies an alternative path to POV-Ray.

Ignoring the Sun’s position

MSIS.exe --batch-file ”../input/test-scenarios.tab” --pov-path ▼
”P:\Program Files\POV-Ray\3.7\bin” --ignore-sun

Specifying the --ignore-sun command-line switch, the MSIS will ignore the calculated Sun
position andwill place the light source in the POV-Ray scene to the camera’s location. isway,
surface parts of the Moon within the field of view will be visible without finding a simulation
time at which this particular part of the Moon’s surface is illuminated by the Sun. is feature
is primarily intended for testing purposes.

Producing a separate rendering with meta information visualization and customized
grid spacing for the pixel-wise information

MSIS.exe --fixed-state {55289,2E6,2E6,0,0,0,3.826834323650898E-1,▼
9.238795325112867E-1} --width 1920 --height 1080 --res 16 ▼
--gridH 25 --gridV 75 --rendering-annotation

e definition of the vertical and horizontal grid spacing for the pixel-wise meta information
changes the number and density of pixels, for which pixel-wise information is generated in the
XML meta information file (the local solar illumination angle). e --rendering-annotation
switch instructs the MSIS to generate a separate PNG image, which visualizes the rendering
meta information in an image overlay.

95

7 C
ha

pt
er

Spacecra Orientation and Rotation
Model Using aternions

Within the MSIS, not only a way to coherently specify a position in space, something
achieved by the definition of a reference frame1, is required, but also a model for the speci-
fication of orientations and rotations, for example, for the camera seing in POV-Ray. ere
exist many ways of performing rotations in R3. e most oen used ones include rotation
matrices, Euler angles and quaternions; the laer are used for this thesis.

is chapter provides a short introduction to the nature of quaternions and their application
to spatial rotations as well as a short note on the rotation and orientation model to be used
within the MSIS.

7.1 Introduction toaternions and Spatial Rotation

Here there is no intention to provide an introduction into the complex mathematical theory of
quaternions and their algebraic or geometric foundations; instead, interested readers maywant
to refer to the excellent book of Jack B. Kuipers [63]. It should be enough to say that quater-
nions provide an advantageous way to represent spatial rotations in 3-dimensional space. In
contrast to Euler angles, they are simpler to compose and compared to rotation matrices they

Chapter Image: aternion plaque on Brougham (Broom) Bridge, Dublin, Ireland. ©2007 Dr Graeme Taylor
(http://straylight.co.uk), University of Bristol. Reproduced with friendly permission.

1 is thesis uses the Mean Earth/Polar Axis (ME/PA) reference frame, as discussed in section 3.1.

97

http://straylight.co.uk

7 Spacecra Orientation and Rotation Model Usingaternions

are numerically more stable. Additionally, quaternions avoid the problem of a gimbal lock and
they can be stored very efficiently. [67]

Nevertheless, this section shall give a brief note on the usage of quaternions for spatial
rotation. aternions are a set of numbers that extends the set of complex numbers C by
adding two additional dimensions. Instead of a complex number c ∈ C, c = c0 + ic1 with its
real part c0 and the imaginary part c1 with the imaginary unit i =

√
−1, a quaternion

q = q0 + iq1 + jq2 + kq3 (7.1)

with q ∈ H, q0, q1, q2, q3 ∈ R

not only consists of one imaginary part q1, but of three imaginary parts q1, q2 and q3 with the
two additional imaginary units j and k, whereas:

i2 = j2 = k2 = ijk = −1 (7.2)

ij = k = −ji (7.3)

jk = i = −kj (7.4)

ki = j = −ik (7.5)

isway, quaternions are a set of 4-dimensional numbers; they are in the class of hyper-complex
numbers. e set of quaternions is denoted by H to the honor of their discoverer, Sir William
Rowan Hamilton2, who first described them in 1843. e real numbers q0, q1, q2 and q3 are
called components of the quaternion q. A quaternion can be wrien as 4-tuple

q = (q0, q1, q2, q3) (7.6)

inR4. ere are several frequently used notations for a quaternion; the above used in equation
7.1 is the most detailed one. However, the author will use the short notation form

q = x0 +

x1

x2

x3

 = [x0,x], (7.7)

whereas x0 ∈ R represents the real part and x ∈ R3, x = (x1, x2, x3)
T the 3-dimensional

imaginary part3. aternions with a real part of zero are called pure quaternions; the set of all

2 Sir William Rowan Hamilton (August 4, 1805 – September 2, 1865) was an Irish physicist, astronomer, and math-
ematician. [113]

3 is is possible, because i, j and k can form an orthonormal base inR3 using the correspondences i l i = (1, 0, 0)T,
j l j = (0, 1, 0)T and k l k = (0, 0, 1)T, because the cross products of the unit vectors

ex = (1, 0, 0)T, ey = (0, 1, 0)T, ez = (0, 0, 1)T (7.8)

98

7.1 Introduction to aternions and Spatial Rotation

pure quaternions is denoted by H0 ⊂ H. aternions do not satisfy the field axioms4; they
are violating the axiom of commutativity of multiplication (all other axioms are satisfied) [63,
p. 6]. Having said this, the quaternion multiplication is non-commutative; therefore

q1q2 ̸= q2q1, q1, q2 ∈ H. (7.10)

e conjugate of quaternion q is denoted by q̄ and can be obtained by multiplying the vector
part of q with −1:

q̄ = [q0,−q] (7.11)

A quaternion multiplication of two quaternions q and r, which is — to recall — non-
commutative, can be carried out by

q · r = [q0,q] · [r0, r] = [q0r0 − ⟨q, r⟩, q0r+ r0q+ q× r]. (7.12)

e norm |q| of a quaternion q is computed with

|q| =
√
q20 + q21 + q22 + q23 . (7.13)

A quaternion with a norm of 1 is called a unit quaternion.
ere is a 1:1 correspondence between a vector v ∈ R3 and a pure quaternion v ∈ H0:

v ↔ v = 0 + v (7.14)

is means that every vector in 3-dimensional space represents a pure quaternion and every
pure quaternion represents a vector in 3-dimensional space. is is important, because it allows
a quaternion to operate on vectors of R3 [63, pp. 114 f.].

Without further proof, rotations in R3 are possible using a rotation quaternion

qR(α,u) =
[
cos

α

2
, sin

α

2
· u
]
, (7.15)

whereas α is the rotation angle and u ∈ R3 is the axis of rotation with a norm of 1 (∥u∥ = 1, u
is therefore a unit vector) [63, pp. 118 f.]. A rotated point p⋆ ∈ R3 originates in the successive

of the standard orthonormal base of R3 give:

ex × ey = ez = −ey × ex, ey × ez = ex = −ez × ey , ez × ex = ey = −ex × ez , (7.9)

which can be identified with equations 7.3, 7.4 and 7.5.
4 In abstract algebra, a field is defined as an algebraic structure with the two operations of addition and multiplica-

tion, satisfying the axioms of (1) closure under all operations, (2) associativity and commutativity of all operations,
(3) existence of neutral elements and inverses for addition and subtraction and (4) distributivity of multiplication
over addition. e operations of subtraction and division are implicitly defined as inverse operations of addition
and multiplication, respectively. [63, pp. 5 f.]

99

7 Spacecra Orientation and Rotation Model Usingaternions

quaternion multiplication of the rotation quaternion qR(α,u), the quaternion p of its original
point p and the conjugate q̄R(α,u) of the rotation quaternion:

p⋆ = [0,p⋆] = qR(α,u) · [0,p] · qR(α,u) (7.16)

at means such a quaternion multiplication would always have to result in a pure quaternion,
which represents a (new) vector in 3-dimensional space. [63, pp. 119 f.]

eorem 7.1. A successive quaternion multiplication of a rotation quaternion qR = [s, tu],
whereas s = cos α

2 and t = sin α
2 , a pure quaternion x and the conjugate q̄R of the rotation

quaternion will always yield a pure quaternion.

Proof.
[s, tu] · [0,x] · [s,−tu]

= [−⟨tu,x⟩, sx+ tu× x] · [s,−tu]

= [−t⟨u,x⟩, sx+ tu× x] · [s,−tu]

= [−t⟨u,x⟩s− ⟨sx+ tu× x,−tu⟩,
−t⟨u,x⟩ · (−tu) + s(sx+ tu× x) + (sx+ tu× x)× (−tu)]

= [−st⟨u,x⟩ − ⟨sx+ tu× x,−tu⟩,
t2⟨u,x⟩u+ s(sx+ tu× x) + (sx+ tu× x)× (−tu)

]
= [−st⟨u,x⟩ − (⟨sx,−tu⟩+ ⟨tu× x,−tu⟩),

t2⟨u,x⟩u+ s(sx+ tu× x) + (sx+ tu× x)× (−tu)
]

=
[
−st⟨u,x⟩ − (−st⟨x,u⟩ − t2⟨u× x,u⟩),
t2⟨u,x⟩u+ s(sx+ tu× x) + (sx+ tu× x)× (−tu)

]
=

−st⟨u,x⟩+ st⟨x,u⟩︸ ︷︷ ︸
=0

+t2 ⟨u× x,u⟩︸ ︷︷ ︸
=det(u,x,u)=0

,

t2⟨u,x⟩u+ s(sx+ tu× x) + (sx+ tu× x)× (−tu)
]

=
[
0, t2⟨u,x⟩u+ s(sx+ tu× x) + (sx+ tu× x)× (−tu)

]
=
[
0, t2⟨u,x⟩u+ s2x+ 2st(u× x)− t2(u× x)× u

]
�

7.2 Spacecra Orientation and Rotation Model

is section explains how the virtual spacecra/camera will be rotated, if a rotation quaternion
qo has been given by the MSIS user. If no rotation quaternion is given, the camera will always

100

7.2 Spacecra Orientation and Rotation Model

point into the direction of nadir and the following text is not applicable.
If a user-given rotation quaternion qo has been set, the virtual spacecra/camera is initially

aligned into the direction d = (−1, 0, 0)T from its actual position; the camera direction vector
cdirection (see section 8.2) will be a scalar multiple of

cpos + d =

cpos,x + dx
cpos,y + dy
cpos,z + dz

 , (7.17)

while the camera’s right vector cright will always point into the direction of r = (0,−w
h , 0)

T,
whereas w is the rendering image width and h the height.

e user-given rotation quaternion qo will be applied to both direction vectors d and r using
quaternion multiplication, resulting in two rotated vectors d⋆ and r⋆:

[0,d⋆] = qo · [0,d] · q̄o (7.18)

[0, r⋆] = qo · [0, r] · q̄o (7.19)

It is assumed that the user-given quaternion qo is a valid rotation quaternion, especially that
|qo| = 1. For the rotation, the axis definition of the ME/PA reference frame applies, that means
the rotation will be carried out in a right-handed, cartesian coordinate system.

101

8 C
ha

pt
er

Dynamical Surface Paern Selection

A generated POV-Ray surface mesh for the entire Moon can consume a lot of space in mem-
ory, depending on the chosen LOLA LDEM resolution, so that a rendering with POV-Ray
may be impossible at a certain resolution. e finest resolution computed for this thesis was
64 px/deg. e generated POV-Ray paern repository for this LOLA LDEM resolution has a file
size over 115 GiB. To render the full Moon surface at this resolution, all data has to be parsed
by POV-Ray (and to be stored in the system memory). Such a rendering would be impossible
on a standard computer.

So an algorithm is used by the MSISF to dynamically select only those paerns out of the
paern repository, which will be visible later in the rendered image. is algorithm has been
named Dynamical Surface Paern Selection Algorithm (DSPSA). e DSPSA is based on the ray
tracing technique: A ray will be shot from the camera’s focal point for each pixel on the image
plane and it will be examined which points on the Moon’s surface encounter the ray. e
needed surface paerns can be identified this way. is technique needs some preliminary
considerations and preparations before implementation.

First, a brief note on the mathematical technique used for ray tracing on the example of
a sphere shall be given in section 8.1. is section is followed by some information on the
internal camera geometry to be used in POV-Ray. With the help of both previous sections, this
chapter finally closes with a discussion of the implementation of the surface paern selection,
explaining the DSPSA in detail.

Chapter Image: is is how surface paerns would have been selected manually, without the DSPSA. Original image
description: Apollo Project. Artists used paintbrushes and airbrushes to recreate the lunar surface on each of
the four models comprising the LOLA simulator. ©1964 NASA/Langley Research Center (LaRC), License: Public
Domain. Available at http://www.nasaimages.org/luna/servlet/detail/nasaNAS~2~2~6659~108281.

103

http://www.nasaimages.org/luna/servlet/detail/nasaNAS~2~2~6659~108281

8 Dynamical Surface Paern Selection

8.1 Ray Tracing with a Sphere

One of the most frequently used examples for the introduction of the ray tracing algorithm
seems to be a scene with a sphere [24, pp. 56–59][22, chapter 2][23, pp. 7, 8, 116–119]. Fortu-
nately, this kind of scene is needed for the purpose of the DSPSA.

Figure 8.1 Example ray tracing scene with a sphere. e sphere’s center is placed at the
origin (0, 0, 0)T of the right-handed coordinate system. ree example rays s1,
s2 and s3 are shot: s1 misses the sphere, s2 is tangential to the sphere’s surface
and s3 intersects the sphere twice. In ray 2 and 3, the intersection points can be
calculated solving equation 8.4 for λ or λ1 and λ2, respectively, and substituting
the parameter(s) into formula 8.2.

At first, a sphere with radius r, whose center is located at the origin (0, 0, 0)T of a cartesian
coordinate system, is considered. All points pi on the surface obviously satisfy the condition

∥pi∥ = r =
√

p2i,x + p2i,y + p2i,z and therefore the power of ∥pi∥ by 2 will be

∥pi∥2 = r2 = p2i,x + p2i,y + p2i,z

= ⟨pi,pi⟩.
(8.1)

104

8.2 Camera Geometry

A ray s(λ) is now shot from its origin o into the direction d. is ray can be wrien as

s(λ) = o+ λd, (8.2)

where λ ∈ [0,∞) is a measure for the distance between the actual photon position s and its
origin o. Due to this equation, all points on the ray s are known. e question now is whether
the ray encounters a point on the sphere’s surface or not. If a surface point pi lies on the ray,
pi must be pi = s(λ) for one λ:

r2 = ⟨pi,pi⟩ = ⟨s(λ), s(λ)⟩ = ⟨o+ λd,o+ λd⟩
= ⟨o,o⟩+ 2⟨o,d⟩λ+ ⟨d,d⟩λ2 (8.3)

Aer subtracting r2 from equation 8.3, a quadratic equation emerges. e two solutions of the
quadratic equation for λ are given by the quadratic formula

λ =
−2⟨o,d⟩ ±

√
4⟨o,d⟩2 − 4⟨d,d⟩⟨o,o⟩+ 4⟨d,d⟩r2

2⟨d,d⟩
. (8.4)

Based on the discriminantD = 4⟨o,d⟩2−4⟨d,d⟩⟨o,o⟩+4⟨d,d⟩r2, a decision can be made
whether the ray will encounter the sphere or not. If D < 0 there will be no solutions in the
set of the real numbers, since the square root of a negative number is not defined there. In this
case, the ray will not encounter the sphere. In the case D = 0 there will be only one solution;
the ray is tangential to the sphere. Finally, the ray intersects the sphere twice, ifD > 0. e hit
surface point(s) can be obtained by evaluating equation 8.2 with the calculated parameter(s) λ.

8.2 Camera Geometry

Tomake a prediction concerning which parts of theMoon’s surface will be visible, not only one
ray must be shot, but one ray for each pixel of the rendered image. is means 1 048 576 rays
must be shot and traced for a rendering size of 1 024 px × 1 024 px. For the correct origin and
direction declaration of each single ray, a consideration of the camera geometry of POV-Ray
is necessary. e MSIS uses the model of a standard pinhole camera, which is a perspective
camera type in POV-Ray. Figure 8.2 shows the camera geometry, as it is set in POV-Ray by the
MSIS.

e camera position cpos is set to the actual spacecra location — no consideration of the
spacecra and instrument geometry will be made by the MSIS. is means spacecra and

105

8 Dynamical Surface Paern Selection

Figure 8.2 POV-Ray camera geometry to be used. e focal point cpos of the camera is iden-
tical with the spacecra/camera location; cpos is a spatial coordinate within the
ME/PA reference frame. e user-given field of view angle α ordains the length
of the camera direction vector cdirection and, by implication, the distance between
the focal point cpos and the image plane Ω.
e pixels of the later rendered picture are a strict subset of all points on the im-
age plane Ω, which is defined by the camera-up vector cup and the camera-right
vector cright. By definition, the rendered image is an axes-parallel rectangle with
a width of ∥cright∥ and a height of ∥cup∥, while the axes, in this case, are cright and
cup itself; the rectangle is centered at cpos + cdirection.
cright and cup are influenced by the user-specified pixel width and height of the
image to be rendered. e determination of the camera orientation is explained
in chapter 7.

106

8.2 Camera Geometry

camera instrument will be one single spatial point1. is way, the terms spacecra and camera
will be used interchangeably henceforth.

e camera direction vector cdirection defines in which direction the camera will be pointed
starting from the camera location cpos. It will be calculated by involving several steps. First,
the direction a of the vector is determined by the quaternion rotation of the vector (−1, 0, 0)T

(this is the default camera direction, c.f. chapter 7) with the orientation quaternion qo ∈ H if
a user-given camera orientation will be used2:

[0,a] = qo ·
[
0, (−1, 0, 0)T

]
· qo (8.5)

If no user-supplied camera orientation is given, the camera will be nadir-looking:

a = −cpos (8.6)

Additionally, the length of the camera direction vector cdirection defines the focal length of
the pinhole camera in POV-Ray; cdirection has to satisfy the equation

∥cdirection∥ =
1
2∥cright∥
tan α

2

, (8.7)

where
[0, cright]

def.
=== qo ·

[
0, (0,−w

h
, 0)T

]
· qo (8.8)

is a POV-Ray specific vector to set the ratio of the image plane, α is the field of view (default
40 degrees) and w and h are the width and height of the rendered image in pixels, respectively.
For a default rendering width and height of w = 1024 px and h = 1024 px and the default
field of view α = 40◦ the length of the camera pointing vector cdirection becomes

∥cdirection∥ =
1
2∥(0,−1, 0)T∥

tan 40◦

2

≈ 1.373 74. (8.9)

e camera direction vector cdirection itself can now be calculated with

cdirection =
a

∥a∥
· ∥cdirection∥ =

a

∥a∥
·

1
2∥cright∥
tan α

2

. (8.10)

1 In fact, spacecra and camera instrument are the same for the MSIS. If another instrument pointing is to be com-
puted, external calculations with respective translations/rotations relative to the camera position and orientation
have to be done.

2 At default, the camera points in the direction of nadir p$ = (0, 0, 0)T, rendering an image perpendicular to the
Moon’s surface at the sub-satellite point. e necessary orientation quaternion will be calculated by the MSIS,
unless the user specifies the camera orientation manually; the camera orientation might be set by the user using a
rotation quaternion and an orientation transition vector or by a fixed orientation quaternion at a given simulation
time. Details of the spacecra orientation notation and rotation model have been discussed previously in chapter
7. From this chapter, the spacecra orientation quaternion qo ∈ H will be used in this chapter.

107

8 Dynamical Surface Paern Selection

e camera-up vector cup is defined to be perpendicular and normal to the plane defined by
the camera-right vector cright and the camera direction vector cdirection. Hence, the camera-up
vector cup can be obtained by calculating the cross product of both vectors:

cup =
cright × cdirection

∥cright × cdirection∥
(8.11)

e camera-up vector cup and the camera-right vector cright now define the plane, on which
the scene will be projected. e later image, which is generated by the rendering process, is a
convex, bounded and closed set I = {(x, y) | x ∈ {1, 2, . . . , w} ⊂ N+, y ∈ {1, 2, . . . , h} ⊂
N+} of w · h discrete pixels as ordered pairs (x, y) on the image plane Ω. e center of pixel
(1, 1)will lie at cpos+cdirection+

h−1
2h cup+

1−w
2w cright. e position of the center of one arbitrary

pixel (x, y) can be wrien as

PixelPos : {1, 2, . . . , w} ⊂ N+ × {1, 2, . . . , h} ⊂ N+ → R3, (x, y) 7→

cpos + cdirection +
1

2
cup −

1

2
cright +

x− 1

w
cright −

y − 1

h
cup

+
1

2w
cright −

1

2h
cup

= cpos + cdirection +
1 + h− 2y

2h
cup −

1 + w − 2x

2w
cright (8.12)

and therefore the image plane Ω as

Ω: R× R → R3, (sx, sy) 7→ cpos + cdirection +
1 + h− 2sy

2h
cup −

1 + w − 2sx
2w

cright. (8.13)

is way, the parameters sx and sy of the image plane Ω are a strict superset of the later
rendered image’s pixels. ese two parameters are called rendering coordinates (sx, sy). ey
differ from the pixels (x, y) of the later rendered images3 as they can be non-integer, negative
and/or numbers not in the defined range (width and height of the later rendered image):

I = {(x, y) | x ∈ {1, 2, . . . , w}, y ∈ {1, 2, . . . , h}} ⊂ Ω = {(sx, sy) | sx, sy ∈ R} (8.14)

With reference to section 8.1, the direction vector d(x, y) for one ray starting at o = cpos

and intersecting a certain pixel on the image plane Ω can now be determined using

d(x, y) = cdirection +
1 + h− 2y

2h
cup −

1 + w − 2x

2w
cright

=
a

∥a∥
·

1
2∥cright∥
tan α

2

+
1 + h− 2y

2h
cup −

1 + w − 2x

2w
cright.

(8.15)

3 Generally, a digital image consists of discrete pixels ∈ N+. Since the plane equation for Ω shall yield continuous
values in R3 by definition, its two parameters need to be in the set of real numbers.

108

8.3 MSIS Implementation

8.3 MSIS Implementation

e DSPSA is implemented as method DSPSA(Vector3D rayDirection, Vector3D camPos,
ArrayList patternList) into the Simulation class. e method expects three arguments:
As required for the ray tracing, the direction vector of one ray shot (rayDirection) must be
given, as well as its origin (camPos). Furthermore, the third argument patternList is an array
of strings, containing the file names of all required surface paerns for this particular rendering
so far.

e algorithm checks whether a ray shot from a specific location into a defined direction hits
theMoon’s surface or not4. If so, the DSPSAwill determine which particular part of theMoon’s
surface has been hit. e associated surface paern will be appended to the list of required
paerns patternList, provided that patternList does not already contain this paern.

e following code snippet demonstrates the code implementation of the DSPSA within the
MSIS; the code explanation follows.

1 private void DSPSA(Vector3D rayDirection, Vector3D camPos, ArrayList patternList)
2 {
3 double discriminant = 4 * Math.Pow(camPos * rayDirection, 2)
4 - 4 * (rayDirection * rayDirection) * (camPos * camPos)
5 + 4 * (rayDirection * rayDirection) * Math.Pow(_moon_radius, 2);
6

7 bool encounter = false;
8 double lat = 0;
9 double lon = 0;
10

11 if (discriminant < 0)
12 {
13 // no encounter
14 }
15 else if (discriminant == 0)
16 {
17 // one intersection
18 encounter = true;
19 double t = (-2 * (camPos * rayDirection)) / (2 * (rayDirection * rayDirection));
20

21 Vector3D ray_point = camPos + rayDirection * t;
22 lat = tools.rad2deg((Math.PI / 2) - Math.Acos(ray_point.z() / _moon_radius));
23 lon = tools.rad2deg(Math.Atan2(ray_point.y(), ray_point.x()));
24 }

4 In case of the DSPSA, the ray origin is always the camera’s location. e ray direction relates, in this context, to
the position of one pixel in the later rendering on the image plane Ω.

109

8 Dynamical Surface Paern Selection

25 else
26 {
27 // two intersections
28 encounter = true;
29 double t1 = (-2 * (camPos * rayDirection) + Math.Sqrt(discriminant))
30 / (2 * (rayDirection * rayDirection));
31 double t2 = (-2 * (camPos * rayDirection) - Math.Sqrt(discriminant))
32 / (2 * (rayDirection * rayDirection));
33

34 Vector3D ray_point1 = camPos + rayDirection * t1;
35 Vector3D ray_point2 = camPos + rayDirection * t2;
36 double ray_norm1 = (ray_point1 - camPos).norm();
37 double ray_norm2 = (ray_point2 - camPos).norm();
38

39 if (ray_norm1 < ray_norm2)
40 {
41 lat = tools.rad2deg((Math.PI / 2) - Math.Acos(ray_point1.z() / _moon_radius));
42 lon = tools.rad2deg(Math.Atan2(ray_point1.y(), ray_point1.x()));
43 }
44 else
45 {
46 lat = tools.rad2deg((Math.PI / 2) - Math.Acos(ray_point2.z() / _moon_radius));
47 lon = tools.rad2deg(Math.Atan2(ray_point2.y(), ray_point2.x()));
48 }
49 }
50

51 if (lon < 0)
52 {
53 lon += 360;
54 }
55

56 if (encounter)
57 {
58 double lat_start = 0;
59 double lat_end = 0;
60 double lon_start = 0;
61 double lon_end = 0;
62 if (lat >= 0)
63 {
64 lat_start = Math.Truncate(lat / 5) * 5;
65 lat_end = lat_start + 5;
66 }
67 else
68 {
69 lat_end = Math.Truncate(lat / 5) * 5;
70 lat_start = lat_end - 5;
71 }

110

8.3 MSIS Implementation

72

73 lon_start = Math.Truncate(lon / 5) * 5;
74 lon_end = lon_start + 5;
75

76 string temp = ”_lat_” + lat_start + ”_” + lat_end + ”_lon_”
77 + lon_start + ”_” + lon_end;
78 if (!patternList.Contains(temp))
79 {
80 patternList.Add(temp);
81 }
82 }
83 }

Listing 8.1 MSIS code implementation of the Dynamical Surface Paern Selection Algo-
rithm (DSPSA).

Based on the user-given camera position (camPos) and ray direction (rayDirection), the
discriminant of the quadratic formula (cf. equation 8.4 on page 105) is calculated (lines 3–5 of
listing 8.1), whereas o is the camera position and d the ray direction. Subsequently, its value
is evaluated at the lines 11–49. If the discriminant is less than 0, the Moon has not been hit by
the ray. e execution of the DSPSA ends here, since no surface paern has to be added to the
patternList.

If the discriminant evaluates to 0, the ray is tangential to one point on the Moon’s surface. In
this case, the value of the auxiliary variable encounter is set to true (line 18), which enables the
addition of the surface paern hit to the patternList at the end of the method. e value of
the ray equation parameter λ (see equation 8.4), which is named here as variable t, is calculated
(line 19). An evaluation of the ray equation with the determined parameter now yields the hit
point of the ray on the Moon’s surface (line 21). Using the equations out of section 3.2, the
selenographic coordinates (latitude and longitude) of this point are calculated (lines 22–23).

If the discriminant is greater than 0, the ray intersects theMoon twice. encounter is likewise
set to true (line 28). e evaluation of equation 8.4 nows yields two values for the ray equation
parameter λ (lines 29–32). e surface hit points ray_point1 and ray_point2 are calculated
(lines 34 and 35). To decide, which of both points is visible on the later rendered image (one
point is on the camera-averted side), the 2-norm of the vectors ray_point1 - camPos and
ray_point2 - camPos, which is the distance of the two points with reference to the camera’s
location, is computed and compared. e point with the smallest distance to the camera will
be visible on the later rendered image, so the selenographic coordinates for this point will be
determined (lines 36–48).

Subsequently, the determined longitude of the visible surface point will be adjusted to be
in [0, 360◦) (lines 51–54), since atan2 yields values in the range [−180◦, 180◦]. Using the se-

111

8 Dynamical Surface Paern Selection

lenographic coordinates of the surface hit point, the file name of the associated surface paern
will be ascertained (lines 58–78) and appended as string to the patternList (lines 79–82). e
DSPSA has finished with this step.

Within the Simulation class, the DSPSA is invoked using the following code snippet:

1 ArrayList pattern = new ArrayList();
2 for (double y = 1; y <= this._height; y++)
3 {
4 for (double x = 1; x <= this._width; x++)
5 {
6 Vector3D rayDirection = sc.getPOVDirection() + (((1 + this._height - (2 * y))
7 / (2 * this._height)) * sc.getPOVUp())
8 - (((1 + this._width - (2 * x)) / (2 * this._width))
9 * sc.getPOVRight());
10 this.DSPSA(rayDirection, scPos, pattern);
11 }
12 }

Listing 8.2 DPSPA invocation within the Simulation class. is code snippet has to be ex-
ecuted for each image to be rendered.

First, an empty variable for the list of paern filenames, pattern, is instantiated (line 1). For
each single pixel of the later rendered image, the ray direction for this particular pixel will be
calculated using equation 8.15 on page 108; the DSPSA method is now invoked specifying this
information (lines 2–12).

8.4 Drawbacks of this Method

e chosen method assumes the Moon to be a perfect sphere with a radius of r$ = 1.73715 ·
106 (±10)m. By implication, this method does not take the Moon’s local topography into ac-
count. An MSISF database query5 for the highest and lowest elevation of the Moon’s surface
gives values of 1 748 160.5m and 1 728 278m (both values are the planetary radius at this par-
ticular surface point), respectively, which means an absolute altitude difference of 19.8825 km
across the Moon’s surface. Neglecting this topography means that the DSPSA may produce
false-positive (pixels identified to show a part of theMoon’s surface, but not showing in reality)
and false-negative (pixels identified not to show a part of the Moon’s surface, but showing in
reality) results in the periphery of the Moon’s surface. is may have influence on renderings

5 SELECT min(planetary_radius), max(planetary_radius) FROM ldem_64;

112

8.4 Drawbacks of this Method

under rendering conditions with low flight altitudes (below 100–200 km) in conjuction with a
non-nadir facing view direction.

Additionally, objects which are outside the visible area of the rendered image can have an
influence on renderings, for example, by (missing) shadow casting. It is possible that an object
is not visible on the rendering itself, but its shadow is visible (see figure 8.4 for an example).
is effect will have increased influence on renderings near the poles, since the paerns are
squeezed together here and so a lot more paerns have to be selected for one rendering in
comparsion with a rendering using the same conditions (flight altitude, view direction) near
the equator.

Figure 8.3 Illustration of paern squeezing at the poles (the orange marked area): A ren-
dering of the same surface area near the poles needs more surface paerns. e
illustration is not drawn to scale (the MSISF surface paerns are much smaller).

However, accounting for the true Moon’s topography within a paern selection algorithm
would be extremely demanding. e MSIS-implemented algorithm has been designed to per-
form and scale very well, even for large renderings (the DSPSA took up 2–5 seconds for images
in resolutions of about 2.3 mega pixels in the tests).

Although these drawbacks are known, they do not represent issues for the thesis’ purpose;
but they could be an issue for other purposes.

113

8 Dynamical Surface Paern Selection

Figure 8.4 DSPSA drawbacks visible on successive renderings of a series. e time is frozen
(the Sun’s position in relation to the Moon’s position will not change), but the
camera moves along a trajectory around the Moon. e camera moves to the
image north with each picture (from le to right, top to boom).
Each le picture shows a shadow caused by an object, which is not visible in the
scene. Each right picture shows the next rendering, when the camera has moved
a lile bit upwards — some shadows disappear, because the paerns, on which
the objects causing the shadows are located, are not selected anymore. e object,
never visible itself, has disappeared, and so has its shadow.

114

9 C
ha

pt
er

XML Meta Rendering Information and
Rendering Annotations

9.1 Definition of the MSIS Output

e MSIS is designed to produce

� a rendering of the Moon’s surface using user-supplied scene seings (simulation time,
orbit, orientation, camera seings etc.) as PNG (Portable Network Graphics) image
(MoonSurfIllumSim_step_XXXXX.png),

� the corresponding POV-Ray file, containing all instructions for generating the actual
scene with POV-Ray, (MoonSurfIllumSim_step_XXXXX.pov) and

� an XML (Extensible Markup Language) file with meta information of several global ren-
dering parameters, as well as the local solar illumination angle of particular surface
points (MoonSurfIllumSim_step_XXXXX.xml)

as basic output in fulfillment of the primary thesis objective.
Notwithstanding that this output is sufficient in the light of the thesis’ task definition, an

extended output, pursuing the visualization of the XMLmeta information, has been envisaged.
is operationmode can be activatedwith the command-line switch --rendering-annotation
and produces an additional PNG file (MoonSurfIllumSim_step_XXXXX.annotated.png). In this
PNG file, the local solar illumination angle, which is given in the pixel-wise information block
in the XML file, will be visualized as a plot overlay of the resulting vector field. In addition,

115

9 XML Meta Rendering Information and Rendering Annotations

some general rendering information will be drawn as text in the upper le corner of the ren-
dering. An example of an annotated rendering is given in figure 9.1.

is annotated rendering will make a quick visualization of the XML file meta information
contents possible for the user. For all further applications, additional soware capable of using
the generated XML file can be developed. It would be conceivable, for example, to develop a
rendering viewer which shows the local solar illumination angle as a text value according to
the current mouse pointer position on the rendering. Such a soware could easily parse and
import the produced XML meta information file of a rendering using the MSIS-supplied XML
DTD (Document Type Definition).

9.2 Structure of the XML Meta Information File

e XML file format has been chosen deliberately, as it guarantees an easy, flawless, extensi-
ble and interoperable way of storing and exchanging the auxiliary rendering meta information
with other applications. eMSIS will produce a well-formed and valid XML file, which is sep-
arated into two distinct classes: A general information block provides particulars on rendering
parameters with a global scope, including the

� simulation time as MJD and UTC date,

� camera position and orientation,

� Sun position,

� flight altitude,

� LDEM resolution used,

� FOV,

� MSIS version and

� command line arguments used,

while the pixel information block gives information on

� the shown local solar illumination angle and

� the surface location

of single rendering pixels. A DTD, containing a definition of all used elements, aributes and
grammatical rules, is supplied along with the MSISF (/lib/MSISRendering.dtd), which allows
proper validation and parsing of the XML file​ (see appendix B.2). Special aention was devoted

116

9.2 Structure of the XML Meta Information File

Figure 9.1 MSIS rendering with rendering annotations activated. e red lines indicate the
local solar illumination angle for each grid sample point, which is marked as a red
dot at the beginning of the lines. e MSIS will only visualize the illumination
angle on pixels, which show the Moon’s surface (not the space background).

117

9 XML Meta Rendering Information and Rendering Annotations

to flexible extendability of the XML file through MSIS code changes, for example, to represent
the output in different units.

e following code snippet shows an exemplary XML meta information file1:

1 <?xml version=”1.0” encoding=”UTF-8” standalone=”no” ?>
2 <!DOCTYPE MSISRendering SYSTEM ”../lib/MSISRendering.dtd”>
3 <MSISRendering>
4 <GeneralInformation>
5 <SimulationTime>
6 <MJD>+5.528900000000000E+004</MJD>
7 <UTC>2010-04-03T00:00:00Z</UTC>
8 </SimulationTime>
9 <CameraPosition unit=”m”>
10 <Vector3D x=”+2.000000000000000E+006” y=”+2.000000000000000E+006”
11 z=”+0.000000000000000E+000” />
12 </CameraPosition>
13 <CameraOrientation>
14 <Quaternion r=”+8.923991008325230E-001” x=”-2.391176183943350E-001”
15 y=”+9.904576054128760E-002” z=”+3.696438106143860E-001” />
16 </CameraOrientation>
17 <SunPosition unit=”m”>
18 <Vector3D x=”+1.074955473280880E+011” y=”-1.042430734878980E+011”
19 z=”+4.036164305561260E+009” />
20 </SunPosition>
21 <FlightAltitude unit=”m”>+1.091277124746190E+006</FlightAltitude>
22 <SurfaceResolution unit=”px/deg”>64</SurfaceResolution>
23 <FOV unit=”deg”>40</FOV>
24 <MSISVersion>2012/02/22</MSISVersion>
25 <CommandLine>--fixed-state {55289,2E6,2E6,0,-2.391176183943345e-001,▼
26 +9.904576054128762e-002,+3.696438106143861e-001,+8.923991008325228e-001}▼
27 --batch --rendering-annotation -r 64</CommandLine>
28 </GeneralInformation>
29 <PixelInformation>
30 <Pixel h=”450” v=”100”>
31 <SelenographicCoordinates lat=”+4.458440049692400E+001”
32 lon=”+5.679090635326980E+001” units=”deg” />
33 <IlluminationDirection unit=”deg”>+2.808505864577170E+002</IlluminationDirection>
34 </Pixel>
35 <Pixel h=”500” v=”100”>
36 <SelenographicCoordinates lat=”+4.165137059729800E+001”
37 lon=”+5.868035440967800E+001” units=”deg” />
38 <IlluminationDirection unit=”deg”>+2.790328202771270E+002</IlluminationDirection>
39 </Pixel>

1 e symbol ▼ means that a line break was introduced for typographic reasons, but there must be no line break here,
because it would cause a malfunction (command line arguments, for example, never contain line breaks).

118

9.2 Structure of the XML Meta Information File

40 ...
41 ...
42 </PixelInformation>
43 </MSISRendering>

Lines 1 and 2 represent the XML and doctype declaration, which gives meta information
about the XML file itself (encoding, version, DTD used). ese lines are followed by the
MSISRendering tag, which marks the body of the XML document. All pre-defined tags and
aributes will be explained within the next paragraphs. By convention, all numbers are dis-
played and stored in the MATLAB longE format (floating-point numbers in scientific notation
with 15 digits aer the decimal point).

CameraOrientation
Camera rotation/orientation quaternion (as specified in chapter 7).

Aributes: none
Element Contents: only defined child elements
Possible Child Elements: Quaternion

CameraPosition
e camera/spacecra position in the ME/PA reference frame.

Aributes: unit unit of the numerical value given in the child element [string]
Element Contents: only defined child elements
Possible Child Elements: Vector3D

CommandLine
All user-given command line arguments for the current MSIS call.

Aributes: none
Element Contents: string
Possible Child Elements: none

FlightAltitude
Flight altitude over MMR.

Aributes: unit unit of the numerical value [string]
Element Contents: numerical value
Possible Child Elements: none

GeneralInformation
Contains information on general rendering parameters (valid for all rendering pixels).

119

9 XML Meta Rendering Information and Rendering Annotations

Aributes: none
Element Contents: only defined child elements
Possible Child Elements: SimulationTime, CameraPosition, CameraOrientation, SunPosition,

FlightAlititude, SurfaceResolution, FOV, MSISVersion, CommandLine

IlluminationDirection
Local solar illumination angle for a certain pixel (cf. section 9.3).

Aributes: unit unit of the numerical value [string]
Element Contents: numerical value
Possible Child Elements: none

MJD
A UTC date given as Modified Julian Date.

Aributes: none
Element Contents: numerical value
Possible Child Elements: none

MSISRendering
Contains the two general information classes and serves as body for the XML document.

Aributes: none
Element Contents: only defined child elements
Possible Child Elements: GeneralInformation, PixelInformation

MSISVersion
MSIS version used.

Aributes: none
Element Contents: MSIS version string
Possible Child Elements: none

Pixel
Container for information on a certain rendering pixel.

Aributes: h horizontal pixel location [uint]
v vertical pixel location [uint]

Element Contents: only defined child elements
Possible Child Elements: SelenographicCoordinates, IlluminationDirection

PixelInformation
Contains local information on certain pixels of the rendering.

120

9.2 Structure of the XML Meta Information File

Aributes: none
Element Contents: only defined child elements
Possible Child Elements: Pixel

aternion
A quaternion representing a spatial rotation/orientation in the ME/PA reference frame (cf.
chapter 7).

Aributes: r real part of the quaternion [double]
x vector part x-component [double]
y vector part y-component [double]
z vector part z-component [double]

Element Contents: none
Possible Child Elements: none

SelenographicCoordinates
A selenographic coordinate (latitude/longitude).

Aributes: lat selenographic latitude [double]
lon selenographic longitutde [double]
units units of the latitude and longitude [string]

Element Contents: none
Possible Child Elements: none

SimulationTime
e rendering simulation time. is element is just a container for other elements.

Aributes: none
Element Contents: only defined child elements
Possible Child Elements: MJD, UTC

SunPosition
e Sun position in the ME/PA reference frame.

Aributes: unit unit of the numerical value given in the child element [string]
Element Contents: only defined child elements
Possible Child Elements: Vector3D

UTC
A UTC date given as ISO 8601 string.

Aributes: none

121

9 XML Meta Rendering Information and Rendering Annotations

Element Contents: full ISO 8601 string
Possible Child Elements: none

Vector3D
A vector representing the position of a point in the ME/PA reference frame.

Aributes: x vector x-component [double]
y vector y-component [double]
z vector z-component [double]

Element Contents: none
Possible Child Elements: none

9.3 Determination of the Local Solar Illumination Angle

e determination and output of the local solar illumination angle is a non-trival task, since
this angle is varying for each pixel of a rendering. Because of these variations, the local solar
illumination angle has to be determined and listed in the meta information file, usually for each
single pixel, which would result in a huge and unmanageable XML file. Fortunately, higher
tolerances are possible, as the variations will likely be in a low order of magnitude between
adjacent pixels unless the flight altitude is really high.

For these reasons, the MSIS will generate pixel meta information by default only in verti-
cal and horizontal margins of 50 px, which results in a gridded discretization. e horizontal
and vertical spacing between the sample points can be user-defined2. For each sample point it
will be proved, whether this actual pixel displays either the Moon’s surface or the space back-
ground. If a pixel represents the Moon’s surface, the following information will be generated:

� Pixel position within the rendering

� Position of the shown surface point on the Moon in selenographic coordinates (lati-
tude/longitude)

� Local solar illumination angle

e procedure for determinating the local illumination angle for each grid point (sx1, sy1)
on the image plane Ω is as follows (cf. figure 9.2):

2 Complete meta information for each single pixel will be generated by seing the horizontal and vertical spacing to
1 px. is is not recommended.

122

9.3 Determination of the Local Solar Illumination Angle

1. Shoot one ray L1 starting from the camera’s focal point cpos through the grid point
(sx1, sy1) on the image plane Ω: Does the ray hit the Moon’s surface? If yes, continue.
Otherwise choose next grid point.

2. Obtain the surface hit point psurf in rectangular and selenographic coordinates.

3. Calculate the Sun direction d̂À (unit vector between surface hit point and Sun position).

4. Calculate the local tangent plane Ξ of the surface hit point.

5. Obtain the subsurface point of psurf+1000 d̂À on the tangent plane Ξ using a projection
technique. is point is named local illumination point plocal.

6. Calculate the local illumination direction d̂local (unit vector between focal point and local
illumination point).

7. Calculate the intersection between the line L2 : R → R3, λ 7→ cpos + λ d̂local and image
plane in rendering coordinates (sx2, sy2).

8. Compute the angle between the vectors (0,−1000)T and (sx2 − sx1, sy2 − sy1)
T. is

angle is the local solar illumination angle α.

e next sections discuss all theoretical steps in detail. Additionally, code snippets show
the MSIS implementation of the particular step. e algorithm is implemented by the function
getIlluminationDirectionPerRenderingPixel(SpacecraftState sc, uint x, uint y)
into the MSIS, which expects the pixel to be considered with its coordinates x and y as argu-
ments, as well as an object of the SpacecraftState class, which contains information about
the scene geometry.

Step 1: Visibility Test

First, it has to be proved whether the given rendering pixel shows the Moon’s surface or the
space background. is is determined using the ray tracing algorithm of the DSPSA (c.f. chap-
ter 8): A ray

L1 : R → R3, λ 7→ cpos︸︷︷︸
=o

+λ d̂(sx1, sy1)︸ ︷︷ ︸
=d

(9.1)

will be shot from the camera’s focal point cpos in the direction d̂(sx1, sy1). is direction takes
the internal camera geometry into account to ensure that the ray will go through the given
pixel (sx1, sy1) on the image plane Ω (see equation 8.15). Using the ray tracing technique
in section 8.1, it can be calculated if the ray will hit the Moon’s surface or not by evaluating
equation 8.4.

123

9 XML Meta Rendering Information and Rendering Annotations

Figure 9.2 Schematic of the local illumination angle determination principle.

If the Moon’s surface is hit, the algorithm continues with step 2. Otherwise, the execution
of the algorithm for this certain pixel ends and the next grid sample point is chosen.

MSIS Implementation
1 // STEP 1: Visibility Test
2 Vector3D rayDirection = (sc.getPOVDirection() + (((1 + Convert.ToDouble(this._height)
3 - (2 * Convert.ToDouble(y))) / (2 * Convert.ToDouble(this._height)))
4 * sc.getPOVUp()) - (((1 + Convert.ToDouble(this._width)
5 - (2 * Convert.ToDouble(x))) / (2 * Convert.ToDouble(this._width)))
6 * sc.getPOVRight())).unit();
7 double discriminant = 4 * Math.Pow(c_pos * rayDirection, 2)
8 - 4 * (rayDirection * rayDirection) * (c_pos * c_pos)
9 + 4 * (rayDirection * rayDirection) * Math.Pow(_moon_radius, 2);
10

11 bool encounter = false;

124

9.3 Determination of the Local Solar Illumination Angle

12 Vector3D p_surf = new Vector3D();
13

14 if (discriminant < 0)
15 {
16 // no encounter
17 }
18 else if (discriminant == 0)
19 {
20 // one intersection
21 encounter = true;
22 double t = (-2 * (c_pos * rayDirection)) / (2 * (rayDirection * rayDirection));
23

24 p_surf = c_pos + rayDirection * t;
25 }
26 else
27 {
28 // two intersections
29 encounter = true;
30 double t1 = (-2 * (c_pos * rayDirection) + Math.Sqrt(discriminant))
31 / (2 * (rayDirection * rayDirection));
32 double t2 = (-2 * (c_pos * rayDirection) - Math.Sqrt(discriminant))
33 / (2 * (rayDirection * rayDirection));
34

35 Vector3D ray_point1 = c_pos + rayDirection * t1;
36 Vector3D ray_point2 = c_pos + rayDirection * t2;
37 double ray_norm1 = (ray_point1 - c_pos).norm();
38 double ray_norm2 = (ray_point2 - c_pos).norm();
39

40 if (ray_norm1 < ray_norm2)
41 {
42 p_surf = ray_point1;
43 }
44 else
45 {
46 p_surf = ray_point2;
47 }
48 }
49 if (encounter)
50 {
51 // Pixel shows the Moon’s surface: Continue with executing steps 2 - 8.
52 }
53 else
54 {
55 // next grid sample point
56 return PixelOut;
57 }

125

9 XML Meta Rendering Information and Rendering Annotations

Step 2: Obtaining the Surface Hit Point

e position of the shown surface hit point can easily be obtained from the ray tracing in-
formation, as explained in section 8.1: By evaluating the ray equation with parameter λ, the
spatial position of the ray hit point can be determined. ese rectangular coordinates can be
converted into selenographical coordinates using their definition (see section 3.2)

ϑ =
π

2
− arccos

psurf,z
r$ and (9.2)

φ = arctan2(psurf,y, psurf,x), (9.3)

where ϑ is the latitude and φ the longitude; arctan2 is the two-argument arctangent function3.
e rendering coordinates (sx1, sy1) are given implicitly by the grid definition and the current
algorithm iteration.

MSIS Implementation
1 double x1 = Convert.ToDouble(x);
2 double y1 = Convert.ToDouble(y);
3

4 // STEP 2: Obtaining the Surface Hit Point
5 PixelOut.lat = tools.rad2deg((Math.PI / 2) - Math.Acos(p_surf.z() / _moon_radius));
6 PixelOut.lon = tools.rad2deg(Math.Atan2(p_surf.y(), p_surf.x()));

Step 3: Calculation of the Sun’s Direction

For each surface point psurface identified with the aforementioned ray tracing technique, the
normalized direction4 d̂À of the Sun’s position as seen from that point will be determined by
subtracting the surface point psurface from the Sun’s position pÀ and a subsequent normaliza-
tion:

d̂À =
pÀ − psurf

∥pÀ − psurf∥
(9.4)

3 arctan2(y, x) =



arctan
(y
x

)
x > 0

arctan
(y
x

)
+ π y ≥ 0, x < 0

arctan
(y
x

)
− π y < 0, x < 0

+π
2

y > 0, x = 0

−π
2

y < 0, x = 0

undefined y = 0, x = 0
4 Normalized, in this context, means the construction of a unit vector.

126

9.3 Determination of the Local Solar Illumination Angle

MSIS Implementation
1 // STEP 3: Calculation of the Sun’s direction
2 Vector3D hat_p_surf = p_surf.unit();
3 Vector3D hat_d_sun = (sc.getSunPosition() - p_surf).unit();

Step 4: Derivation of the Local Tangent Plane of the Surface Hit Point

e local tangent plane Ξ of the surface hit point psurf is defined as the plane, which contains
all tangents of the surface hit point psurf on the Moon’s sphere. Ξ is necessarily perpendicular
to the position vector of the surface hit point psurf, which originates in the Moon’s center. is
way, the unit vector p̂surf of psurf is the normal vector n̂Ξ of Ξ. In order to construct a plane,
two non-collinear support vectors u1 and u2 need to be defined. A support vector could be
every vector which is perpendicular to the normal vector n̂Ξ of Ξ, satisfying

⟨n̂Ξ,u1⟩ = 0 and ⟨n̂Ξ,u2⟩ = 0. (9.5)

is is obviously true5 for both arbitrarily chosen support vectors

u1 = (−p̂surf,y, p̂surf,x, 0)
T and u2 = (0,−p̂surf,z, p̂surf,y)

T. (9.6)

e local tangent plane Ξ can now be wrien as

Ξ(λ1, λ2) : R× R → R3, (λ1, λ2) 7→ psurf + λ1

−p̂surf,y
p̂surf,x
0

+ λ2

 0

−p̂surf,z
p̂surf,y

 . (9.7)

Step 5: Determination of a Subsurface Point of the Solar Illumination Direction on
the Local Tangent Plane

e Sun’s illumination direction line

LÀ(λ3) : R → R3, λ3 7→ psurf + λ3 d̂À (9.8)

has to be projected to the local tangent plane Ξ of psurf to obtain the local solar illumination
line

Llocal(λ4) ⊂ Ξ: R → R3, λ4 7→ psurf + λ4(plocal − psurf) (9.9)

along the Moon’s surface. Due to the implicit knowledge of the intersection point of the tan-
gential plane Ξ and the line defined by the Sun’s position and the surface hit point — namely,
the surface hit point psurf itself — it is sufficient to determine a single point plocal of the local
solar illumination line. Figure 9.3 gives a detailed overview of the geometrical constitution.

5 ⟨n̂Ξ,u1⟩ =
⟨
(p̂surf,x, p̂surf,y , p̂surf,z)

T, (−p̂surf,y , p̂surf,x, 0)
T
⟩
= p̂surf,xp̂surf,y − p̂surf,xp̂surf,y + 0 = 0

⟨n̂Ξ,u2⟩ =
⟨
(p̂surf,x, p̂surf,y , p̂surf,z)

T, (0,−p̂surf,z , p̂surf,y)
T
⟩
= 0− p̂surf,y p̂surf,z + p̂surf,y p̂surf,z = 0

127

9 XML Meta Rendering Information and Rendering Annotations

Figure 9.3 Geometrical construction of plocal.

e aforementioned point can be the projection of one arbitrarily chosen point of LÀ to Ξ; it
is called plocal. To ensure an adequate margin between psurf and plocal, a margin of λ3 = 1000

is found to be suitable. As elucidated in step 4, the normal vector n̂Ξ of the local tangent plane
Ξ is the unit vector p̂surf of the surface hit point psurf. is way, n̂Ξ must be the direction vector
of a line

L3(λ5) : R → R3, λ5 7→ LÀ(λ3 = 1000) + λ5 n̂Ξ = psurf + 1000 d̂À + λ5 n̂Ξ (9.10)

throughLÀ(λ3 = 1000), which is perpendicular to the tangential planeΞ, too. e subsurface
point psurf is the intersection point of L3 and Ξ and can be obtained by equating L3 and Ξ

L3(λ5) = Ξ(λ1, λ2)

psurf + 1000 d̂À + λ5 n̂Ξ = psurf + λ1 u1 + λ2 u2

1 000

d̂À,x

d̂À,y

d̂À,z

+ λ5

p̂surf,x
p̂surf,y
p̂surf,z

 = λ1

−p̂surf,y
p̂surf,x
0

+ λ2

 0

−p̂surf,z
p̂surf,y

 (9.11)

and solving for λ5

λ5 = −
1000

(
d̂À,xp̂surf,x + d̂À,y p̂surf,y + d̂À,z p̂surf,z

)
p̂2surf,x + p̂2surf,y + p̂2surf,z

(9.12)

128

9.3 Determination of the Local Solar Illumination Angle

or λ1 and λ2

λ1 = −
1000

(
−d̂À,yp̂surf,xp̂surf,y − d̂À,z p̂surf,xp̂surf,z + d̂À,x

(
p̂2surf,y + p̂2surf,z

))
p̂surf,y

(
p̂2surf,x + p̂2surf,y + p̂2surf,z

) (9.13)

λ2 =
1000

(
d̂À,z

(
p̂2surf,x + p̂2surf,y

)
−
(
d̂À,xp̂surf,x + d̂À,yp̂surf,y

)
p̂surf,z

)
p̂surf,y

(
p̂2surf,x + p̂2surf,y + p̂2surf,z

) (9.14)

and a subsequent evaluation of L3(λ5) or Ξ(λ1, λ2) with these calculated values of λ5 or λ1

and λ2, respectively.

MSIS Implementation
1 // STEP 4: Derivation of the Local Tangent Plane of the Surface Hit Point
2 // (nothing to do here)
3 // STEP 5: Determination of a Subsurface Point of the Solar Illumination
4 // Direction on the Local Tangent Plane
5 double lambda_5 = -(1000 * (hat_d_sun.x() * hat_p_surf.x() + hat_d_sun.y() * hat_p_surf.y()
6 + hat_d_sun.z() * hat_p_surf.z())
7) / (
8 hat_p_surf.x() * hat_p_surf.x()
9 + hat_p_surf.y() * hat_p_surf.y()
10 + hat_p_surf.z() * hat_p_surf.z()
11);
12 Vector3D p_local = p_surf + 1000 * hat_d_sun + lambda_5 * hat_p_surf;

Step 6: Local Illumination Direction

e local illumination direction vector d̂local, which gives the direction of plocal from the pre-
vious step as seen from the camera’s focal point cpos, is now built by

d̂local =
plocal − cpos

∥plocal − cpos∥
. (9.15)

MSIS Implementation
1 // STEP 6: Local Illumination Direction
2 Vector3D hat_d_local = (p_local - c_pos).unit();

129

9 XML Meta Rendering Information and Rendering Annotations

Step 7: Projection of the Local Illumination Point to the Image Plane

In this step, the projection point (sx2, sy2) in rendering coordinates of plocal to the camera’s
image plane Ω is identified. For that reason, a line

L2 : R → R3, t 7→ cpos + t d̂local (9.16)

between the camera’s focal point cpos and plocal is constructed. e intersection point of this
line with the image plane Ω is calculated.

e intercept in rendering coordinates can be calculated equating the image plane

Ω: R× R → R3, (sx, sy) 7→ cpos + cdirection +
1 + h− 2sy

2h
cup −

1 + w − 2sx
2w

cright (9.17)

(cf. formula 8.13; description of cdirection, cup, w and h op. cit.) and line L2. By solving the
resulting system of equations

k
def.
=== cpos + cdirection (9.18)

cpos + t d̂local = k+
1 + h− 2sy2

2h
cup −

1 + w − 2sx2
2w

cright (9.19)

for the rendering coordinates sx2 and sy2, both coordinates evaluate to

sx2 =
c1
2c2

and sy2 =
c3
2c4

(9.20)

whereas

c1 =− 2wcpos,ycup,z d̂local,x − cright,ycup,zd̂local,x − wcright,ycup,z d̂local,x

+ 2wcpos,xcup,z d̂local,y + cright,xcup,zd̂local,y + wcright,xcup,z d̂local,y

+ 2wcpos,z(cup,yd̂local,x − cup,xd̂local,y)

+ (1 + w)cright,z(cup,yd̂local,x − cup,xd̂local,y)

+ 2wcpos,ycup,xd̂local,z + cright,ycup,xd̂local,z + wcright,ycup,xd̂local,z

− 2wcpos,xcup,yd̂local,z − cright,xcup,yd̂local,z − wcright,xcup,yd̂local,z

− 2wcup,z d̂local,ykx + 2wcup,yd̂local,zkx + 2wcup,z d̂local,xky − 2wcup,xd̂local,zky

− 2wcup,yd̂local,xkz + 2wcup,xd̂local,ykz

c2 = cright,z(cup,yd̂local,x − cup,xd̂local,y)

+ cright,y(−cup,z d̂local,x + cup,xd̂local,z)

+ cright,x(cup,zd̂local,y − cup,yd̂local,z)

c3 =− cright,zcup,yd̂local,x − hcright,zcup,yd̂local,x + cright,ycup,zd̂local,x

130

9.3 Determination of the Local Solar Illumination Angle

+ hcright,ycup,z d̂local,x − 2hcpos,xcright,zd̂local,y + cright,zcup,xd̂local,y

+ hcright,zcup,xd̂local,y − cright,xcup,z d̂local,y − hcright,xcup,z d̂local,y

+ cpos,z(−2hcright,yd̂local,x + 2hcright,xd̂local,y) + 2hcpos,xcright,yd̂local,z

− cright,ycup,xd̂local,z − hcright,ycup,xd̂local,z + cright,xcup,yd̂local,z

+ hcright,xcup,yd̂local,z + 2hcpos,y(cright,z d̂local,x − cright,xd̂local,z)

+ 2hcright,z d̂local,ykx − 2hcright,yd̂local,zkx − 2hcright,z d̂local,xky

+ 2hcright,xd̂local,zky + 2hcright,yd̂local,xkz − 2hcright,xd̂local,ykz

c4 = cright,z(−cup,yd̂local,x + cup,xd̂local,y)

+ cright,y(cup,zd̂local,x − cup,xd̂local,z) + cright,x(−cup,zd̂local,y + cup,yd̂local,z).

MSIS Implementation
1 // STEP 7: Projection of the Local Illumination Point to the Image Plane
2 Vector3D k = c_pos + sc.getPOVDirection();
3 Vector3D c_up = sc.getPOVUp();
4 Vector3D c_right = sc.getPOVRight();
5 double w = Convert.ToDouble(this._width);
6 double h = Convert.ToDouble(this._height);
7

8 double x2 =
9 (
10 -2 * w * c_pos.y() * c_up.z() * hat_d_local.x() - c_right.y() * c_up.z()
11 * hat_d_local.x() - w * c_right.y() * c_up.z() * hat_d_local.x()
12 + 2 * w * c_pos.x() * c_up.z() * hat_d_local.y() + c_right.x() * c_up.z()
13 * hat_d_local.y() + w * c_right.x() * c_up.z() * hat_d_local.y()
14 + 2 * w * c_pos.z() * (c_up.y() * hat_d_local.x() - c_up.x() * hat_d_local.y())
15 + (1 + w) * c_right.z() * (c_up.y() * hat_d_local.x() - c_up.x() * hat_d_local.y())
16 + 2 * w * c_pos.y() * c_up.x() * hat_d_local.z() + c_right.y() * c_up.x()
17 * hat_d_local.z() + w * c_right.y() * c_up.x() * hat_d_local.z()
18 - 2 * w * c_pos.x() * c_up.y() * hat_d_local.z() - c_right.x() * c_up.y()
19 * hat_d_local.z() - w * c_right.x() * c_up.y() * hat_d_local.z()
20 - 2 * w * c_up.z() * hat_d_local.y() * k.x() + 2 * w * c_up.y() * hat_d_local.z()
21 * k.x() + 2 * w * c_up.z() * hat_d_local.x() * k.y() - 2 * w * c_up.x()
22 * hat_d_local.z() * k.y()
23 - 2 * w * c_up.y() * hat_d_local.x() * k.z() + 2 * w * c_up.x()
24 * hat_d_local.y() * k.z()
25)/(
26 2 * (c_right.z() * (c_up.y() * hat_d_local.x() - c_up.x() * hat_d_local.y())
27 + c_right.y() * (-c_up.z() * hat_d_local.x() + c_up.x() * hat_d_local.z())
28 + c_right.x() * (c_up.z() * hat_d_local.y() - c_up.y() * hat_d_local.z()))
29);
30

31 double y2 =

131

9 XML Meta Rendering Information and Rendering Annotations

32 (
33 -c_right.z() * c_up.y() * hat_d_local.x() - h * c_right.z() * c_up.y()
34 * hat_d_local.x() + c_right.y() * c_up.z() * hat_d_local.x() + h * c_right.y()
35 * c_up.z() * hat_d_local.x() - 2 * h * c_pos.x() * c_right.z() * hat_d_local.y()
36 + c_right.z() * c_up.x() * hat_d_local.y() + h * c_right.z() * c_up.x()
37 * hat_d_local.y() - c_right.x() * c_up.z() * hat_d_local.y() - h * c_right.x()
38 * c_up.z() * hat_d_local.y() + c_pos.z() * (-2 * h * c_right.y()
39 * hat_d_local.x() + 2 * h * c_right.x() * hat_d_local.y()) + 2 * h * c_pos.x()
40 * c_right.y() * hat_d_local.z() - c_right.y() * c_up.x() * hat_d_local.z()
41 - h * c_right.y() * c_up.x() * hat_d_local.z() + c_right.x() * c_up.y()
42 * hat_d_local.z() + h * c_right.x() * c_up.y() * hat_d_local.z() + 2 * h
43 * c_pos.y() * (c_right.z() * hat_d_local.x() - c_right.x() * hat_d_local.z())
44 + 2 * h * c_right.z() * hat_d_local.y() * k.x() - 2 * h * c_right.y()
45 * hat_d_local.z() * k.x() - 2 * h * c_right.z() * hat_d_local.x() * k.y()
46 + 2 * h * c_right.x() * hat_d_local.z() * k.y() + 2 * h * c_right.y()
47 * hat_d_local.x() * k.z() - 2 * h * c_right.x() * hat_d_local.y() * k.z()
48)/(
49 2 * (c_right.z() * (-c_up.y() * hat_d_local.x() + c_up.x() * hat_d_local.y())
50 + c_right.y() * (c_up.z() * hat_d_local.x() - c_up.x() * hat_d_local.z())
51 + c_right.x() * (-c_up.z() * hat_d_local.y() + c_up.y() * hat_d_local.z()))
52);

Final Step 8: The Local Solar Illumination Angle

e two intercept points of the linesL1 andL2 and the image planeΩ in rendering coordinates
(sx1, sy1) and (sx2, sy2) are the essence aer the execution of all previous steps. Finally, the
local solar illumination angleα can be derived as an angle between the 2D vectors (0,−1 000)T

and (sx2 − sx1, sy2 − sy1)
T (see figure 9.4):

v1
def.
===

(
0

−1 000

)
(9.21)

v2
def.
===

(
sx2 − sx1
sy2 − sy1

)
(9.22)

α = ^(v1,v2) =

arccos ⟨v1,v2⟩
∥v1∥∥v2∥ for v2,x ≥ 0

2π − arccos ⟨v1,v2⟩
∥v1∥∥v2∥ otherwise

(9.23)

132

9.3 Determination of the Local Solar Illumination Angle

Figure 9.4 Geometrical construction of the local illumination angle α.

MSIS Implementation
1 // STEP 8: The Local Solar Illumination Angle
2 Vector2D v1 = new Vector2D(0, 1000);
3 Vector2D v2 = new Vector2D(x2-x1, y2-y1);
4

5 if (v2.x() > 0)
6 {
7 PixelOut.IlluminationAngle =
8 tools.rad2deg(Math.Acos((v1 * v2) / (v1.norm() * v2.norm())));
9 }
10 else
11 {
12 PixelOut.IlluminationAngle =
13 tools.rad2deg(2 * Math.PI - Math.Acos((v1 * v2) / (v1.norm() * v2.norm())));
14 }
15 PixelOut.exists = true;
16

17 return PixelOut;

133

10 C
ha

pt
er

Results, Discussion and Conclusion

10.1 Synopsis of the Work Results

In the course of this thesis work, a soware framework for the realistic illumination simulation
of the Moon’s surface, the Moon Surface Illumination Simulation Framework (MSISF) has been
developed. e MSISF consists not only of one single application, but rather of a framework
of soware components for distinct tasks. Its main component, the Moon Surface Illumination
Simulator (MSIS) is the main user interface, which is able to produce the envisaged renderings
(an example rendering produced by the MSISF can be seen on the le page).

It has been shown how these renderings will be suitable for the development and testing
of new optical navigation algorithms, since not only the renderings themselves are generated,
but also these renderings are augmented with general and pixel-wise meta information in the
machine-readable XML format. One of the most important items of meta information is the
specification of the local solar illumination angle on arbitrary points of the visible Moon’s sur-
face on renderings. No other soware is currently known to produce these outputs; actual
optical navigation algorithms are oen tested using example pictures from real space explo-
ration missions, which naturally fail in terms of the availability of the needed ground truth
data, whereas the MSIS produces renderings with exactly known parameters for the environ-
mental conditions.

e MSIS also demonstrated its ability not only to produce single renderings, but also whole
series of renderings corresponding to a virtual flight trajectory or landing on the Moon at an

Chapter Image: MSIS rendering of the Moon at a high altitude.

135

10 Results, Discussion and Conclusion

arbitrary sampling frequency. ese rendering series can be assembled into a video of the
flight to simulate the continuous video stream of a camera aboard a spacecra. e MSIS is
powerful and — simultaneously — resource-efficient enough to be run on a standard personal
computer. In the course of this thesis, videos with durations up to 45 seconds (at 30 frames per
second) could be generated on a standard personal computer within 24 hours1. Utilizing the
power of more than one physical machine, much lower rendering times would be possible. By
spliing batch files into separate pieces, the MSIS offers a native way to perform a distributed
rendering of rendering series on multiple machines.

At the time of writing this thesis, the DLR Institute of Planetary Research in Berlin-Adlershof
also produced a video of the Moon’s surface using a DEM, but which was produced by the
institute itself using another technique. e LDEMs used in this thesis are produced using
laser altimetry, while the DLR Institute of Space Research used a 3D extraction algorithm for
stereo images of the Moon’s surface. is technique is more demanding than the use of laser
altimeters, but it is believed to produce DEMs in far higher resolutions, since every pixel of
a stereo image contains information of the topography; this way, the measurement density is
much greater than the single laser beam samples of a laser altimeter. However, two weeks and
a cluster of 40 computers were needed to produce this DEM and the associated video. [85]

NASA also prepared a video of theMoon from the LRO LOLA data, but at a very high altitude
and from a fixed position, showing the lunar phases as seen from Earth for the entire year 2012.
NASA states that “[…] using the LRO altimeter data, it can calculate the lengths, directions,
and positions of all the shadows of mountains, crater rims, and so on, knowing the angle of
the Sun over the horizon” [101].

e MSISF is capable of producing both of the aforementioned videos, too. Even an auto-
matic color-coding of the surface elevation as seen as in [85] or a texture overlay as in [101]
would be conceivable using POV-Ray’s possibilities.

Due to the separation of the import and conditioning of digital elevation models (DEMs) from
the MSIS using PHP scripts and a MySQL database with spatial extensions, the MSISF is very
flexible from a broader view. e MSISF is not only limited to the Moon; in fact the MSISF
is able to produce renderings of all spherical celestial bodies with solid surfaces, for which
sufficient DEMs exist.

Utilizing the MSISF, a powerful tool has been developed for the rendering of realistic illu-
minated solid planetary surfaces, which is able to produce reusable, machine-readable meta
information for the purpose of the development and testing of new optical navigation algo-
rithms and systems.

1 ese videos are available at http://go.rene-schwarz.com/masters-thesis.

136

http://go.rene-schwarz.com/masters-thesis

10.2 Suggestions for Improvements and Future Work

At the very end of this thesis, a short overview of the currently available scientific references
in the research field of the illuminance flow estimation on pictures, like they are produced by
the MSISF, should have been given. Illuminance flow estimation is expected to give an esti-
mation of the local solar illumination angle for a particular pixel of an image showing a part
of a celestial surface. e output of an illuminance flow estimation should ideally be identical
to the local solar illumination angle output of the MSIS, assuming that the same definition for
the local solar illumination angle is being used. While the MSIS can exactly calculate the local
solar illumination angle for a particular pixel out of its information on the scene geometry, an
illuminance flow estimation algorithm has to estimate these angles without any additional in-
formation on the scene geometry, as is always the case in a real space situation. Unfortunately,
there has not been enough time in the narrow timetable of this thesis to get an in-depth look
at the proposed algorithms and techniques. However, the presented reference collection (see
bibliography in the backmaer) will be a good entry point for further theses and research on
this topic.

10.2 Suggestions for Improvements and Future Work

Although the MSISF has been designed and developed very carefully, there are suggestions for
starting points of further improvements and additional work, which have not been possible for
reasons of time or lack of sufficient data or new soware versions.

10.2.1 Performance Optimization

As said before in the introduction of the MSISF in chapter 2, the overall performance of the
LDEM import and conditioning process as well as the paern generation process could be
significantly increased by using an optimized storage solution (e.g. solid-state disks in a RAID
0 configuration), if the utilization of LDEM resolutions greater than 64 px/deg is necessary.

An additional starting point for a performance optimization of the rendering process is the
open-source POV-Ray rendering soware itself. By far the most time is consumed during the
rendering process at parsing the surfacemeshes by POV-Ray, which takes up nearly all the time
needed for a rendering. Instead of storing the meshes in a text format, “binary meshes”, which
means meshes that are stored directly as POV-Ray memory maps, could be used, canceling the
requirement for a parsing process. Unfortunately, the POV-Ray team currently has no plans
to do this [104]. Nevertheless, POV-Ray is an open-source soware; the development of an
original renderer, implementing binary meshes, is conceivable.

137

10 Results, Discussion and Conclusion

10.2.2 Improvement of the Topography Database

As soon as it is available, the paern repository should be rebuilt with NASA LRO LDEMs
without interpolated data points. Currently, version 1.05 of the LOLA LDEM data is used, but
at the time of completion of this thesis, version 1.09 is available (cf. chapter 4). e usage of
DEMswith less interpolated datawill significantly increase the quality of the rendered surfaces.
Particularly for the polar regions of the Moon, NASA also offers DEMs in polar stereographic
projection. An investigation and experimental integration of these data sets into the MSISF
could be reasonable.

10.2.3 Graphical User Interface

e development of an additional, graphical user interface (GUI) with the possibility of a 3D
preview of the specified simulation timepoints, for example, using the Windows Presentation
Foundation 3D (WPF 3D), would allow a fast preview and evaluation of the chosen simulation
seings. Since the MSIS can be invoked using a normal process call, no changes to the MSISF
are necessary; the GUI would simply be added as another tool to the MSISF. Such a GUI would
also lower the obstacles for new users.

10.2.4 Rendering Parallelization/Distributed Rendering

Although the MSIS offers a native way of performing a distributed rendering by spliing batch
files into several pieces, there should be a solution for the centralized controlling of the render-
ing process, what could maybe achieved with a client-server solution. Actually, the rendering
process on each single machine to be used has to be initiated manually. Additionally, there
should be a user option (an additional command-line argument), which allows the user to
choose their own file name paern for the generated output files, simplifying the later assem-
bly process.

10.2.5 Utilization of the MSISF for Other Celestial Bodies

Since NASA science data is usually distributed in file formats that conform to the PDS standard,
a rewrite of the import script (ldem_mysql_import.php), which can parse the corresponding
PDS label files and cope with the given parameters without the need for manual seing of these
parameters could be advantageous in terms of the import of DEMs of other celestial bodies.

138

10.2 Suggestions for Improvements and Future Work

10.2.6 Real-Time Video Preparation

With the development of the aforementioned GUI, a real-time video preparation would be
possible, because the GUI is only required to display a simplified 3D model as preview, since
an ideal sphere is sufficient for preview purposes. e visualization of such a simple 3D model
is possible at high sample rates on today’s personal computers. e calculation of the light
source position utilizing SPICE would be possible at high sample rates, too. is way, the
user-given simulation timepoints could be visualized within the GUI at a user-given frame
rate. is approach enables the user to have a preview during the preparation of the rendering
series, without the need to render each single picture, what could be time saving.

10.2.7 Compile POV-Ray as Windows Command-Line Tool

e currently available Windows version of POV-Ray opens its GUI every time POV-Ray has
been invoked (even from the command line). ere is no possibility to disable the GUI in
Windows. A true batch mode (a command-line-only version of POV-Ray for Windows) will
probably be released with version 3.7.0 [103]. If there is no command-line-only version with
the release of version 3.7.0, an alternative would be an original compilation, removing the GUI
components from the source code.

10.2.8 INI Seings

Constant seings, which will be needed for every MSIS call (e.g. the path to the POV-Ray
binary, the output directory, etc.) should be stored in a configuration file and loaded every
time the MSIS is executed to achieve maximum comfort for the end-user.

10.2.9 Original Implementation of the 2D Delaunay Triangulation

For time reasons, the 2D-Delaunay triangulation for the surface paern generation script
(generate_pattern.php) has been developed as an external application, which is being called
by the paern generation script. is application has been compiled from a simple MATLAB
script (delaunay2D.m, available in the /src/ directory of the MSISF installation path) using the
MATLAB Compiler:

mcc -o delaunay2D.exe -m delaunay2D.m

e delaunay2D.m script only consists of a few lines of code (see section 5.2). e resulting
application delaunay2D.exe requires the MATLAB Compiler Runtime (MCR) to be installed
on the target system. e MCR is a commercial product, which is not freely available; a dis-
tribution of the MCR along with the MSISF is not allowed for license reasons. Additionally,

139

10 Results, Discussion and Conclusion

the startup of MATLAB-compiled application takes a long time, probably because of the ini-
tialization of the MCR. It is advisable to do an original implementation of the 2D Delaunay
triangulation or to use available free implementations (such as those from the CGAL, for ex-
ample)​ for speed improvements and availability.

10.2.10 Compensate the Drawbacks of the DSPSA

One possibility for the partial compensation of the drawbacks of theDynamical Surface Paern
Selection Algorithm (DSPSA) (cf. section 8.4), which is responsible for the selection of needed
surface paerns for a rendering, could be the introduction of a security margin along the pe-
riphery of the visible surface area. is would lower the influence of surface features, which
are not visible on the later renderings themselves, but which can be detected by their shadows.
is solution requires an extension of the DSPSA.

10.3 Construction Progress of TRON

Unfortunately, the construction progress of the TRON facility at the DLR Institute of Space
Systems in Bremen has been delayed. At the time of the completion of this thesis, no test
image material exists for a comparison of the TRON results with MSIS renderings. Currently,
TRON is at the end of the building phase; the calibration of all actors is being prepared at this
time. Figure 10.1 shows the current construction state.

However, the TRON development is far advanced: e 6 DOF industrial robot, which will
carry the camera and other optical instruments later, as well as the 5 DOF lighting system, are
installed and can be controlled in real time using dSPACE real time hardware. e calibration
of both systems is carried out with a laser-based tracking system, which is able to localize the
positions of all actuators within the TRON facility at an accuracy of ±0.01mm. e ability of
an accurate positioning of all actuators is an indispensable requirement for the operation of
TRON, since the robot’s own telemetry shows errors in the magnitude of a couple of millime-
ters or a tenth of a degree. e positioning of all actuators with an error margin of 1mm has
been a design parameter of the TRON laboratory. Systematic errors in the robot’s telemetry
are introduced by physical circumstances of the laboratory room itself (uneven walls) as well
as fabrication-caused variations in the robot rail systems. Additional research is necessary re-
garding the occurrence of dynamical effects contributing to the aforementioned overall error,
for example, temperature variations or displacement caused by the infinitesimal movement of
the surrounding building, vibrations, and so on.

3D surface tiles of the Moon’s surface are currently being prepared for installation on the
laboratory walls for a project on behalf of the European Space Agency (ESA). An example 3D
surface tile is depicted in figure 10.2.

140

10.3 Construction Progress of TRON

Figure 10.1 Current construction progress of the TRON facility. Visible is the floor-mounted
6 DOF industrial robot simulating a spacecra as well as the ceiling-mounted 5
DOF lighting system. © DLR; picture reproduced with friendly permission.

141

10 Results, Discussion and Conclusion

Figure 10.2 A TRON 3D surface tile of the Moon’s surface for a project on behalf of the
European Space Agency (ESA). © DLR; picture reproduced with friendly per-
mission.

Current plans are for TRON to reach test readiness before June 2012; first test image material
is expected a short time aer this date.

10.4 MSISF Application at DLR

In the current process of planning, the MSISF will be used for the verification and evaluation of
the quality of images generated by TRON once it is ready. Additionally, the MSISF will deliver
test images for the testing and evaluation of new spacecra navigation algorithms, whereas
the knowledge and availability of machine-readable, pixel-wise information regarding the lo-
cal solar illumination angle will be an important advantage over all other existing solutions.
With increasing LDEM resolutions, the MSISF is also able to produce ground truth data with
unprecedented detail.

142

10.4 MSISF Application at DLR

In comparison with TRON, the MSISF has several advantages:

1. e MSISF is able to produce realistically curved terrains, which is only possible using
a small (in the order of magnitude of 1 × 1m) 3D surface tile with TRON, but not over
the entire laboratory area.

2. e MSISF can produce virtual, infinitely long, continuous flight trajectories, while
TRON is limited to the installed 3D surface tiles and the spatial limitations of the labo-
ratory.

3. A series of renderings can be produced at virtually every sample rate, while TRON is
limited to the camera’s maximum sample rate. In addition, TRON is only able to produce
pictures in a certain, minimum step size because of the limitations introduced by the
robot’s positioning accuracy.

4. e possibilities for the variation of simulation parameters with reference to flight al-
titude, illumination angle, field of view, etc. are manifold, whereas the possibilities of
TRON are limited by the physical properties of the camera or quality of the fabricated
3D surface tiles (terrain models) to be used.

5. e simulation parameters of the MSISF are exactly known.

Nevertheless, TRON also has advantages compared with the MSISF:

1. Only a physical simulation allows a direct qualification of space hardware using real-
time hardware-in-the-loop (HiL) configurations.

2. Generally, a qualification of other space hardware (e.g. combined camera navigation
systems) is possible in the first place, using a physical experimental assembly.

3. Only the usage of real cameras allows an evaluation of the influences of optical effects,
which are difficult tomodel using a soware system (or impossible, if real time conditions
are required), on navigation algorithms.

4. TRON allows a physically accessible simulation of the application of hardware in space
scenarios.

However, only both components in conjunction will offer a holistic solution for the develop-
ment and testing of new optical navigation systems. Both MSISF and TRON together will have
the potential to make a significant contribution to research for the next generation of space
exploration systems.

143

A A
pp
en

di
x

MSIS User Interface Specification

— table beginning at the next page —

145

A
M
SIS

U
ser

Interface
Specification

Option Description Shorthd.

--time MJD Simulation time as Modified Julian Date (MJD(UTC)) -t

--times {MJD1,MJD2,MJD3,...} List of discrete time steps for the simulation time as Modified Julian Dates
(MJD(UTC)).

-tt

--time-interval
[start_time:stepsize:end_time]

An interval of discrete time steps for the simulation time as Modified Julian Dates
(MJD); specified using a start time, a stepsize and end time. e single points of time
will be calculated using the given stepsize (MATLAB syntax).

Remark:
Be careful with this option, since it can produce a large amount of renderings.

--epoch MJD Point of time (epoch) as Modified Julian Date MJD(UTC) for whom the given orbital
parameters are valid.

-e

--kepler-set
{a,e,omega,Omega,i,M0}

A traditional set of Keplerian Orbit Elements for the S/C orbit. Consists of
a - semi-major axis [m]
e - eccentricity [1]
omega - argument of periapsis [rad]
Omega - longitude of ascending node (LAN) [rad]
i - inclination [rad]
M0 - mean anomaly at epoch [rad]

is option must not be used, if a set of cartesian state vectors (-s,
--state-vectors) has been given before.

-k

146

--state-vectors
{rx,ry,rz,drx,dry,drz}

Cartesian state vectors specifying the S/C orbit. Consists of
rx - position of the S/C w.r.t. Moon’s ME/PA reference frame (x-axis) [m]
ry - position of the S/C w.r.t. Moon’s ME/PA reference frame (y-axis) [m]
rz - position of the S/C w.r.t. Moon’s ME/PA reference frame (z-axis) [m]
drx - velocity of the S/C w.r.t. Moon’s ME/PA reference frame (x-axis) [m/s]
dry - velocity of the S/C w.r.t. Moon’s ME/PA reference frame (y-axis) [m/s]
drz - velocity of the S/C w.r.t. Moon’s ME/PA reference frame (z-axis) [m/s]

is option must not be used, if a set of Keplerian orbit elements (-k,
--kepler-set) has been given before.

-s

--pattern-repos PATH Set the path of the paern repository.

Default: ./pattern-repository/

-p

--pov-path PATH Set the path of the POV-Ray executable (pvengine64.exe).

Default: ./POV-Ray-3.7/bin/

--output-dir PATH Directory for the output files.

Default: ./output/

-o

--fov DEGREES Adjusts the camera field of view (FOV). Must be given in degrees.

Default: 40

-f

--attitude {qx,qy,qz,q0} Sets the S/C orientation according to a given quaternion q = q0 + qx i + qy j +
qz k at epoch.

Without this option, the S/C is pointed in the direction of Nadir, aligned to the
north pole by default.

-a

147

A
M
SIS

U
ser

Interface
Specification

--attitude-transition
{dpx,dpy,dpz}

Set the S/C orientation transition w.r.t. time by a vector consisting of angular
velocities around the respective axis of the S/C.

Default: {0,0,0}

-at

--width WIDTH Sets the width in pixel of the rendered image(s).

Default: 1024

-w

--height HEIGHT Sets the height in pixel of the rendered image(s).

Default: 1024

-h

--res RESOLUTION Sets the resolution of the used LOLA LDEM paerns for the rendering.

Default: 4

-r

--batch Close application aer finishing operations. is option should be used in batch
mode or when MoonIllumSim.exe is called from another process.

-b

--ignore-sun Instructs the MSIS to ignore the Sun’s position; the light source will be placed
directly at the camera position. Useful if no MJD is known, at whom the Sun will
illuminate the scene.

--rendering-annotation Produce an additional rendering with auxiliary information (simulation timecode,
s/c position and orientation, Sun position, flight altitude, surface mesh resolution,
FOV etc.) and a visualization of the local solar illumination angles.

--fixed-state
{MJD,rx,ry,rz,qx,qy,qz,q0}

Disable orbit calculations; use a fixed s/c position and orientation at a given time
instead.

148

--batch-file FILENAME Disable orbit calculations; use fixed s/c positions and orientations at given discrete
times.

Batch File Contents:
e batch file consists of one line for each s/c state; each line has to satisfy the
following paern (where whitespaces between the single parts represent an
arbitrary amount of tabulators or whitespaces):

MJD rx ry rz qx qy qz q0

--grid SPACING Sets the grid spacing (both horizontally/vertically) for the output of the meta
information (illumination direction, latitude/longitude etc.). SPACING is an unsigned
integer value >0, giving the horizontal and vertical spacing in pixels.

Default: 10

-g

--gridH SPACING Sets the grid horizontal spacing for the output of the meta information (illumination
direction, latitude/longitude etc.). SPACING is an unsigned integer value >0, giving
the horizontal spacing in pixels.

Default: 10

-gH

--gridV SPACING Sets the grid vertical spacing for the output of the meta information (illumination
direction, latitude/longitude etc.). SPACING is an unsigned integer value >0, giving
the vertical spacing in pixels.

Default: 10

-gV

149

B A
pp
en

di
x

Code Listings

B.1 MySQL Server Instance Configuration

1 # MySQL Server Instance Configuration File
2 # --
3 # Generated by the MySQL Server Instance Configuration Wizard
4 #
5 #
6 # Installation Instructions
7 # --
8 #
9 # On Linux you can copy this file to /etc/my.cnf to set global options,
10 # mysql-data-dir/my.cnf to set server-specific options
11 # (@localstatedir@ for this installation) or to
12 # ~/.my.cnf to set user-specific options.
13 #
14 # On Windows you should keep this file in the installation directory
15 # of your server (e.g. C:\Program Files\MySQL\MySQL Server X.Y). To
16 # make sure the server reads the config file use the startup option
17 # ”--defaults-file”.
18 #
19 # To run run the server from the command line, execute this in a
20 # command line shell, e.g.
21 # mysqld --defaults-file=”C:\Program Files\MySQL\MySQL Server X.Y\my.ini”
22 #
23 # To install the server as a Windows service manually, execute this in a
24 # command line shell, e.g.
25 # mysqld --install MySQLXY --defaults-file=”C:\Program Files\MySQL\MySQL Server X.Y\my.ini”

151

B Code Listings

26 #
27 # And then execute this in a command line shell to start the server, e.g.
28 # net start MySQLXY
29 #
30 #
31 # Guildlines for editing this file
32 # --
33 #
34 # In this file, you can use all long options that the program supports.
35 # If you want to know the options a program supports, start the program
36 # with the ”--help” option.
37 #
38 # More detailed information about the individual options can also be
39 # found in the manual.
40 #
41 #
42 # CLIENT SECTION
43 # --
44 #
45 # The following options will be read by MySQL client applications.
46 # Note that only client applications shipped by MySQL are guaranteed
47 # to read this section. If you want your own MySQL client program to
48 # honor these values, you need to specify it as an option during the
49 # MySQL client library initialization.
50 #
51 [client]
52 port=3306
53 #ssl-ca=”C:/srv/mysql/ca-cert.pem”
54 #ssl-cert=”C:/srv/mysql/client-cert.pem”
55 #ssl-key=”C:/srv/mysql/client-key.pem”
56

57 [mysql]
58

59 default-character-set=utf8
60

61

62 # SERVER SECTION
63 # --
64 #
65 # The following options will be read by the MySQL Server. Make sure that
66 # you have installed the server correctly (see above) so it reads this
67 # file.
68 #
69 [mysqld]
70 # The TCP/IP Port the MySQL Server will listen on
71 port=3306
72 #ssl-ca=”C:/srv/mysql/ca-cert.pem”

152

B.1 MySQL Server Instance Configuration

73 #ssl-cert=”C:/srv/mysql/server-cert.pem”
74 #ssl-key=”C:/srv/mysql/server-key.pem”
75 #server-id=1
76 #log-bin=”C:/srv/mysql/replication/mysql-bin.bin”
77

78 max_allowed_packet=16M
79

80

81 #Path to installation directory. All paths are usually resolved relative to this.
82 basedir=”S:/srv/Software/mysql-5.5.20-winx64/”
83

84 #Path to the database root
85 datadir=”S:/srv/mysql/data/”
86 log-error=”S:/srv/mysql/logs/error.log”
87

88 # The default character set that will be used when a new schema or table is
89 # created and no character set is defined
90 character-set-server=utf8
91

92 # The default storage engine that will be used when create new tables when
93 default-storage-engine=MYISAM
94

95 # Set the SQL mode to strict
96 sql-mode=”STRICT_TRANS_TABLES,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION”
97

98 # The maximum amount of concurrent sessions the MySQL server will
99 # allow. One of these connections will be reserved for a user with
100 # SUPER privileges to allow the administrator to login even if the
101 # connection limit has been reached.
102 max_connections=800
103

104 # Query cache is used to cache SELECT results and later return them
105 # without actual executing the same query once again. Having the query
106 # cache enabled may result in significant speed improvements, if your
107 # have a lot of identical queries and rarely changing tables. See the
108 # ”Qcache_lowmem_prunes” status variable to check if the current value
109 # is high enough for your load.
110 # Note: In case your tables change very often or if your queries are
111 # textually different every time, the query cache may result in a
112 # slowdown instead of a performance improvement.
113 query_cache_size=84M
114

115 # The number of open tables for all threads. Increasing this value
116 # increases the number of file descriptors that mysqld requires.
117 # Therefore you have to make sure to set the amount of open files
118 # allowed to at least 4096 in the variable ”open-files-limit” in
119 # section [mysqld_safe]

153

B Code Listings

120 table_cache=1520
121

122 # Maximum size for internal (in-memory) temporary tables. If a table
123 # grows larger than this value, it is automatically converted to disk
124 # based table This limitation is for a single table. There can be many
125 # of them.
126 tmp_table_size=1G
127

128

129 # How many threads we should keep in a cache for reuse. When a client
130 # disconnects, the client’s threads are put in the cache if there aren’t
131 # more than thread_cache_size threads from before. This greatly reduces
132 # the amount of thread creations needed if you have a lot of new
133 # connections. (Normally this doesn’t give a notable performance
134 # improvement if you have a good thread implementation.)
135 thread_cache_size=38
136

137 #*** MyISAM Specific options
138

139 # The maximum size of the temporary file MySQL is allowed to use while
140 # recreating the index (during REPAIR, ALTER TABLE or LOAD DATA INFILE.
141 # If the file-size would be bigger than this, the index will be created
142 # through the key cache (which is slower).
143 myisam_max_sort_file_size=100G
144

145 # If the temporary file used for fast index creation would be bigger
146 # than using the key cache by the amount specified here, then prefer the
147 # key cache method. This is mainly used to force long character keys in
148 # large tables to use the slower key cache method to create the index.
149 myisam_sort_buffer_size=30M
150

151 # Size of the Key Buffer, used to cache index blocks for MyISAM tables.
152 # Do not set it larger than 30% of your available memory, as some memory
153 # is also required by the OS to cache rows. Even if you’re not using
154 # MyISAM tables, you should still set it to 8-64M as it will also be
155 # used for internal temporary disk tables.
156 key_buffer_size=5G
157

158 # Size of the buffer used for doing full table scans of MyISAM tables.
159 # Allocated per thread, if a full scan is needed.
160 read_buffer_size=250M
161 read_rnd_buffer_size=500M
162

163 # This buffer is allocated when MySQL needs to rebuild the index in
164 # REPAIR, OPTIMZE, ALTER table statements as well as in LOAD DATA INFILE
165 # into an empty table. It is allocated per thread so be careful with
166 # large settings.

154

B.1 MySQL Server Instance Configuration

167 sort_buffer_size=500M
168

169

170 #*** INNODB Specific options ***
171 innodb_data_home_dir=”S:/srv/mysql/data/InnoDB/”
172

173 # Use this option if you have a MySQL server with InnoDB support enabled
174 # but you do not plan to use it. This will save memory and disk space
175 # and speed up some things.
176 #skip-innodb
177

178 # Additional memory pool that is used by InnoDB to store metadata
179 # information. If InnoDB requires more memory for this purpose it will
180 # start to allocate it from the OS. As this is fast enough on most
181 # recent operating systems, you normally do not need to change this
182 # value. SHOW INNODB STATUS will display the current amount used.
183 innodb_additional_mem_pool_size=6M
184

185 # If set to 1, InnoDB will flush (fsync) the transaction logs to the
186 # disk at each commit, which offers full ACID behavior. If you are
187 # willing to compromise this safety, and you are running small
188 # transactions, you may set this to 0 or 2 to reduce disk I/O to the
189 # logs. Value 0 means that the log is only written to the log file and
190 # the log file flushed to disk approximately once per second. Value 2
191 # means the log is written to the log file at each commit, but the log
192 # file is only flushed to disk approximately once per second.
193 innodb_flush_log_at_trx_commit=1
194

195 # The size of the buffer InnoDB uses for buffering log data. As soon as
196 # it is full, InnoDB will have to flush it to disk. As it is flushed
197 # once per second anyway, it does not make sense to have it very large
198 # (even with long transactions).
199 innodb_log_buffer_size=3M
200

201 # InnoDB, unlike MyISAM, uses a buffer pool to cache both indexes and
202 # row data. The bigger you set this the less disk I/O is needed to
203 # access data in tables. On a dedicated database server you may set this
204 # parameter up to 80% of the machine physical memory size. Do not set it
205 # too large, though, because competition of the physical memory may
206 # cause paging in the operating system. Note that on 32bit systems you
207 # might be limited to 2-3.5G of user level memory per process, so do not
208 # set it too high.
209 innodb_buffer_pool_size=250M
210

211 # Size of each log file in a log group. You should set the combined size
212 # of log files to about 25%-100% of your buffer pool size to avoid
213 # unneeded buffer pool flush activity on log file overwrite. However,

155

B Code Listings

214 # note that a larger logfile size will increase the time needed for the
215 # recovery process.
216 innodb_log_file_size=50M
217

218 # Number of threads allowed inside the InnoDB kernel. The optimal value
219 # depends highly on the application, hardware as well as the OS
220 # scheduler properties. A too high value may lead to thread thrashing.
221 innodb_thread_concurrency=50

B.2 MSISRendering XML Document Type Definition
(DTD)

1 <!--
2 ###
3 I N F O H E A D E R
4

5 N O T E !
6 This DTD file belongs to any MoonSurfIllumSim_step_[vwxyz].xml file and
7 it should be wrapped in a DOCTYPE definition with the following syntax:
8 <!DOCTYPE root-element SYSTEM ”filename”>
9

10 E L E M E N T I N C I D E N C E D E C L A R A T I O N
11 ? - none / once
12 + - once to infinite
13 * - none to infinite
14 <!ELEMENT element-name (child-name?,child-name+,child-name*)
15

16 D E C L A R I N G E I T H E R / O R C O N T E N T
17 Example: <!ELEMENT note (to,from,header,(message|body))>
18

19 A T T R I B U T E V A L U E S
20 PLEASE CHECK URL: http://www.w3schools.com/dtd/dtd_attributes.asp
21

22 E N D O F I N F O H E A D E R
23 ###
24 -->
25

26 <!-- R O O T E L E M E N T A N D C H I L D E L E M E N T S
27 I N M A N D A N T O R Y O R D E R -->
28 <!ELEMENT MSISRendering (GeneralInformation, PixelInformation)>
29

30 <!-- C H I L D E L E M E N T # 1 A N D E X T E N D I N G
31 E L E M E N T S I N M A N D A N T O R Y O R D E R -->
32 <!ELEMENT GeneralInformation (SimulationTime,CameraPosition,CameraOrientation,SunPosition,▼

156

B.2 MSISRendering XML Document Type Definition (DTD)

33 FlightAltitude,SurfaceResolution,FOV,MSISVersion,CommandLine)>
34

35 <!-- S I M U L A T I O N T I M E A N D E X T E N D I N G E L E M E N T S -->
36 <!ELEMENT SimulationTime (MJD,UTC)>
37 <!ELEMENT MJD (#PCDATA)>
38 <!ELEMENT UTC (#PCDATA)>
39

40 <!-- C A M E R A P O S I T I O N -->
41 <!ELEMENT CameraPosition (Vector3D)>
42 <!ELEMENT Vector3D EMPTY>
43 <!ATTLIST CameraPosition unit (m) #FIXED ”m”>
44 <!ATTLIST Vector3D x CDATA #REQUIRED y CDATA #REQUIRED z CDATA #REQUIRED>
45

46 <!-- C A M E R A O R I E N T A T I O N -->
47 <!ELEMENT CameraOrientation (Quaternion)>
48 <!ELEMENT Quaternion EMPTY>
49 <!ATTLIST Quaternion r CDATA #REQUIRED x CDATA #REQUIRED y CDATA #REQUIRED z ▼
50 CDATA #REQUIRED>
51

52 <!-- S U N P O S I T I O N -->
53 <!ELEMENT SunPosition (Vector3D)>
54 <!ATTLIST SunPosition unit (m) #FIXED ”m”>
55 <!ATTLIST Vector3D x CDATA #REQUIRED y CDATA #REQUIRED z CDATA #REQUIRED>
56

57 <!-- F L I G H T A L T I T U D E -->
58 <!ELEMENT FlightAltitude (#PCDATA)>
59 <!ATTLIST FlightAltitude unit (m) #FIXED ”m”>
60

61 <!-- S U R F A C E R E S O L U T I O N -->
62 <!ELEMENT SurfaceResolution (#PCDATA)>
63 <!ATTLIST SurfaceResolution unit CDATA ”px/deg”>
64

65 <!-- F O V -->
66 <!ELEMENT FOV (#PCDATA)>
67 <!ATTLIST FOV unit (deg) #FIXED ”deg”>
68

69 <!-- M S I S V E R S I O N -->
70 <!ELEMENT MSISVersion (#PCDATA)>
71

72 <!-- COMMAND LINE ARGUMENTS -->
73 <!ELEMENT CommandLine (#PCDATA)>
74

75 <!-- C H I L D E L E M E N T # 2 A N D E X T E N D I N G E L E M E N T -->
76 <!ELEMENT PixelInformation (Pixel+)>
77

78 <!-- P I X E L -->
79 <!ELEMENT Pixel (SelenographicCoordinates,IlluminationDirection)>

157

B Code Listings

80 <!ATTLIST Pixel x CDATA #REQUIRED y CDATA #REQUIRED>
81

82 <!ELEMENT SelenographicCoordinates EMPTY>
83 <!ATTLIST SelenographicCoordinates lat CDATA #REQUIRED lon CDATA #REQUIRED units ▼
84 (deg) #FIXED ”deg”>
85

86 <!ELEMENT IlluminationDirection (#PCDATA)>
87 <!ATTLIST IlluminationDirection unit (deg) #FIXED ”deg”>

B.3 LDEM Import Script

1 <?php
2 # ***
3 # _
4 # | |
5 # _ __ ___ _ __ ___ ___ ___| |____ ____ _ _ __ ____
6 # | ’__/ _ \ ’_ \ / _ \ / __|/ __| ’_ \ \ /\ / / _‘ | ’__|_ /
7 # | | | __/ | | | __/ __ \ (__| | | \ V V / (_| | | / /
8 # |_| ___|_| |_|___| |___/___|_| |_|_/_/ __,_|_| /___|
9 # rene-schwarz.com
10 #
11 # ***
12 # MSISF LRO LOLA LUNAR DIGITAL ELEVATION MODEL MYSQL IMPORT SCRIPT
13 # ***
14 #
15 # Author: B.Eng. René Schwarz
16 # mail: <mail@rene-schwarz.com>
17 # web: http://www.rene-schwarz.com
18 # on behalf of the German Aerospace Center (DLR)
19 # Date: 2012/01/30
20 # Filename: ldem_mysql_insert.php
21 # Version: 1.0
22 # License: GNU General Public License (GPL), version 2 or later
23 #
24 # ***
25 /**
26 * @mainpage MSISF LRO LOLA Lunar Digital Elevation Model MySQL Import Script
27 * @brief
28 * MSISF LRO LOLA Lunar Digital Elevation Model MySQL Import Script
29 *
30 * This script imports NASA LRO LOLA LDEM datasets into a spatial MySQL
31 * database. This database is required by the MSISF for the generation of
32 * the surface pattern repository.
33 *
34 * LDEM import has only to be done once per resolution or after an update of

158

B.3 LDEM Import Script

35 * NASA files for a certain resolution. Afterwards all surface patterns of this
36 * specific resolution have to be re-generated using the generate_pattern.php
37 * script. If a pattern repository already exists with actual data, neither a
38 * MySQL import nor a (re-)generation of surface patterns is necessary.
39 *
40 * Please be aware that the LDEM data import process for resolutions greater
41 * than LDEM_16 can require a considerable amount of time and resources,
42 * depending on your hardware configuration. Import times in the order of
43 * hours are not unusual.
44 *
45 * For more information, see my master’s thesis,
46 * available at <http://go.rene-schwarz.com/masters-thesis>.
47 *
48 *
49 * Copyright (c) 2011 B.Eng. René Schwarz <mail@rene-schwarz.com>
50 * Licensed under the GNU General Public License (GPL), version 2 or later
51 *
52 *
53 *
54 * Requirements:
55 * - MySQL database with tables prepared for the lunar topographic data as
56 * specified in [1]
57 * - PHP >= version 5.3.9
58 * - corresponding NASA LRO LOLA LDEM files, available from
59 * <http://imbrium.mit.edu/DATA/LOLA_GDR/CYLINDRICAL/IMG/>, which shall be
60 * imported
61 *
62 *
63 * References:
64 * [1] Schwarz, René: Development of an illumination simulation software for
65 * the Moon’s surface: An approach to illumination direction estimation
66 * on pictures of planetary solid surfaces with a significant number of
67 * craters. Master’s Thesis, Merseburg University of Applied Sciences,
68 * German Aerospace Center (DLR). Books on Demand, Norderstedt, Germany,
69 * 2012.
70 *
71 *
72 * @author B.Eng. René Schwarz <mail@rene-schwarz.com>
73 * @version 1.0
74 * @date 2012/01/30
75 */
76 # ===
77 # Configuration of the MySQL import process
78 # ===
79

80 # LDEM resolution (integer) to be used (preconfigured for LDEM_4, LDEM_16,
81 # LDEM_64, LDEM_128, LDEM_256, LDEM_512 and LDEM_1024).

159

B Code Listings

82 $LDEM = 1024;
83

84 # Path to LDEM directory, where all LDEM files (*.img) to be imported are placed
85 # (w/o trailing slash)
86 $path_LDEM = ”L:/path/to/LDEM”;
87

88 # MySQL connection parameters
89 $mysql_host = ”localhost”; # MySQL server, e.g. ”localhost” or ”localhost:3306”
90 $mysql_db = ””; # MySQL database
91 $mysql_user = ””; # MySQL username for specified database
92 $mysql_pwd = ””; # MySQL password for specified username
93

94 # LDEM-specific options
95 # These parameters can be found in the corresponding *.lbl files for each *.img file.
96 # Preconfigured for LDEM_4, LDEM_16, LDEM_64, LDEM_128, LDEM_256, LDEM_512 and LDEM_1024.
97 switch($LDEM)
98 {
99 case 4:
100 default:
101 /* LDEM_4 */
102 $c_MAP_RESOLUTION = 4;
103 $c_LINE_SAMPLES = 1440;
104 $c_LINE_LAST_PIXEL = 720;
105 $c_LINE_PROJECTION_OFFSET = 359.5;
106 $c_SAMPLE_PROJECTION_OFFSET = 719.5;
107 break;
108

109 case 16:
110 /* LDEM_16 */
111 $c_MAP_RESOLUTION = 16;
112 $c_LINE_SAMPLES = 5760;
113 $c_LINE_LAST_PIXEL = 2880;
114 $c_LINE_PROJECTION_OFFSET = 1439.5;
115 $c_SAMPLE_PROJECTION_OFFSET = 2879.5;
116 break;
117

118 case 64:
119 /* LDEM_64 */
120 $c_MAP_RESOLUTION = 64;
121 $c_LINE_SAMPLES = 23040;
122 $c_LINE_LAST_PIXEL = 11520;
123 $c_LINE_PROJECTION_OFFSET = 5759.5;
124 $c_SAMPLE_PROJECTION_OFFSET = 11519.5;
125 break;
126

127 case 128:
128 /* LDEM_128 */

160

B.3 LDEM Import Script

129 $c_MAP_RESOLUTION = 128;
130 $c_LINE_SAMPLES = 46080;
131 $c_LINE_LAST_PIXEL = 23040;
132 $c_LINE_PROJECTION_OFFSET = 11519.5;
133 $c_SAMPLE_PROJECTION_OFFSET = 23039.5;
134 break;
135

136 case 256:
137 /* LDEM_256 */
138 $c_MAP_RESOLUTION = 256;
139 $c_LINE_SAMPLES = 46080;
140 $c_LINE_LAST_PIXEL = 23040;
141 break;
142

143 case 512:
144 /* LDEM_512 */
145 $c_MAP_RESOLUTION = 512;
146 $c_LINE_SAMPLES = 46080;
147 $c_LINE_LAST_PIXEL = 23040;
148 break;
149

150 case 1024:
151 /* LDEM_1024 */
152 $c_MAP_RESOLUTION = 1024;
153 $c_LINE_SAMPLES = 30720;
154 $c_LINE_LAST_PIXEL = 15360;
155 break;
156 }
157

158 # ===
159 # END CONFIGURATION
160 #
161 # DON’T EDIT BEYOND THIS LINE!
162 # ===
163

164 $mtime = microtime();
165 $mtime = explode(” ”,$mtime);
166 $mtime = $mtime[1] + $mtime[0];
167 $starttime = $mtime;
168

169 function cline($str = ””)
170 {
171 print(”{$str}\r\n”);
172 }
173

174 $c_SAMPLE_BITS = 16;
175 $c_RECORD_BYTES = ($c_LINE_SAMPLES * $c_SAMPLE_BITS)/8;

161

B Code Listings

176 $c_CENTER_LATITUDE = 0;
177 $c_CENTER_LONGITUDE = 180;
178 $c_SCALING_FACTOR = 0.5;
179 $c_OFFSET = 1737400;
180

181 if($LDEM > 128)
182 {
183 if(!isset($argv[1]))
184 {
185 die(”For LDEM resolutions greater than 128 px/deg files have been\r\n” .
186 ”splitted by NASA. Additional command-line arguments are necessary\r\n” .
187 ”for the specification of the certain LDEM part. The values can\r\n” .
188 ”be found in the corresponding *.lbl file.\r\n\r\n” .
189 ”USAGE:\r\n” .
190 ”php ldem_mysql_insert.php additionalFilenamePart LINE_PROJECTION_OFFSET ” .
191 ”SAMPLE_PROJECTION_OFFSET\r\n\r\n” .
192 ”EXAMPLE:\r\n” .
193 ”php ldem_mysql_insert.php 00N_15N_330_360 15359.5 -153600.5\r\n”);
194 }
195

196 $filename = ”{$path_LDEM}/LDEM_{$c_MAP_RESOLUTION}_{$argv[1]}.img”;
197 $c_LINE_PROJECTION_OFFSET = $argv[2];
198 $c_SAMPLE_PROJECTION_OFFSET = $argv[3];
199 }
200 else
201 {
202 $filename = ”{$path_LDEM}/LDEM_{$c_MAP_RESOLUTION}.img”;
203 }
204

205 if($handle = fopen($filename, ”r”))
206 {
207 cline(”NASA LOLA data file \”{$filename}\” opened.”);
208 }
209 else
210 {
211 die(”NASA LOLA data file \”{$filename}\” could not be opened.”);
212 }
213

214 cline(”Connecting to MySQL database...”);
215 $mysqli = new mysqli($mysql_host, $mysql_user, $mysql_pwd, $mysql_db);
216 cline(”Connection to MySQL database established.”);
217

218 for($line = 1; $line <= $c_LINE_LAST_PIXEL; $line++)
219 {
220 $mtime = microtime();
221 $mtime = explode(” ”,$mtime);
222 $mtime = $mtime[1] + $mtime[0];

162

B.3 LDEM Import Script

223 $lstarttime = $mtime;
224

225 fseek($handle, ($line - 1) * $c_RECORD_BYTES);
226 $line_content = unpack(”s*”, fread($handle, $c_RECORD_BYTES));
227

228 $sql = ”INSERT INTO LDEM_{$c_MAP_RESOLUTION} (lat, lon, planetary_radius, x, y, z, ” .
229 ”point) VALUES ”;
230

231 $j = 1;
232 for($sample = 1; $sample <= $c_LINE_SAMPLES; $sample++)
233 {
234 $dn = $line_content[$sample];
235

236 $point[”lat”] = $c_CENTER_LATITUDE - ($line - $c_LINE_PROJECTION_OFFSET - 1)
237 / $c_MAP_RESOLUTION;
238 $point[”lon”] = $c_CENTER_LONGITUDE +
239 ($sample - $c_SAMPLE_PROJECTION_OFFSET - 1) / $c_MAP_RESOLUTION;
240 $point[”height”] = ($dn * $c_SCALING_FACTOR);
241 $point[”planetary_radius”] = $point[”height”] + $c_OFFSET;
242 $point[”x”] = $point[”planetary_radius”] * cos(deg2rad($point[”lat”]))
243 * cos(deg2rad($point[”lon”]));
244 $point[”y”] = $point[”planetary_radius”] * cos(deg2rad($point[”lat”]))
245 * sin(deg2rad($point[”lon”]));
246 $point[”z”] = $point[”planetary_radius”] * sin(deg2rad($point[”lat”]));
247 $point[”point”] = ”PointFromText(’POINT({$point[”lat”]} {$point[”lon”]})’)”;
248

249 if(substr($sql, -7) == ”VALUES ”)
250 {
251 $sql .=”(’{$point[”lat”]}’, ’{$point[”lon”]}’, ’{$point[”planetary_radius”]}’”.
252 ”, ’{$point[”x”]}’, ’{$point[”y”]}’, ’{$point[”z”]}’, {$point[”point”]})”;
253 }
254 else
255 {
256 $sql .=”, (’{$point[”lat”]}’, ’{$point[”lon”]}’, ’{$point[”planetary_radius”]}’”.
257 ”, ’{$point[”x”]}’, ’{$point[”y”]}’, ’{$point[”z”]}’, {$point[”point”]})”;
258 }
259

260 $j++;
261

262 // prevent extreme huge SQL queries
263 // (cut at 24000 inserts, since one LDEM_64 line contains 23,040 values)
264 if($j > 24000)
265 {
266 if(!$mysqli->query($sql))
267 {
268 $mysqli->close();
269 die(”Error: ” . $mysqli->error);

163

B Code Listings

270 }
271 $sql = ”INSERT INTO LDEM_{$c_MAP_RESOLUTION} (lat, lon, planetary_radius, x, y” .
272 ”, z, point) VALUES ”;
273 $j = 1;
274 }
275 }
276

277 if(!$mysqli->query($sql))
278 {
279 $mysqli->close();
280 die(”Error: ” . $mysqli->error);
281 }
282

283 $mtime = microtime();
284 $mtime = explode(” ”,$mtime);
285 $mtime = $mtime[1] + $mtime[0];
286 $lendtime = $mtime;
287 $ltotaltime = ($lendtime - $lstarttime);
288 cline(”Line {$line} of {$c_LINE_LAST_PIXEL} processed (” .
289 (memory_get_peak_usage()/(1024*1024)) . ” MiB, total execution time:” .
290 ”{$ltotaltime} sec.)...”
291);
292 }
293

294 cline();
295 cline();
296 $mysqli->close();
297 cline(”MySQL connection closed.”);
298

299 $mtime = microtime();
300 $mtime = explode(” ”,$mtime);
301 $mtime = $mtime[1] + $mtime[0];
302 $endtime = $mtime;
303 $totaltime = ($endtime - $starttime);
304 cline();
305 cline(”Operation has finished.”);
306 cline(”Peak memory needed: ” . (memory_get_peak_usage()/(1024*1024)) . ” MiB, total” .
307 ”execution time: {$totaltime} sec.”
308);
309

310 ?>

164

B.4 Paern Generation Script

B.4 Paern Generation Script

1 <?php
2 # ***
3 # _
4 # | |
5 # _ __ ___ _ __ ___ ___ ___| |____ ____ _ _ __ ____
6 # | ’__/ _ \ ’_ \ / _ \ / __|/ __| ’_ \ \ /\ / / _‘ | ’__|_ /
7 # | | | __/ | | | __/ __ \ (__| | | \ V V / (_| | | / /
8 # |_| ___|_| |_|___| |___/___|_| |_|_/_/ __,_|_| /___|
9 # rene-schwarz.com
10 #
11 # ***
12 # MSISF SURFACE PATTERN GENERATION SCRIPT
13 # ***
14 #
15 # Author: B.Eng. René Schwarz
16 # mail: <mail@rene-schwarz.com>
17 # web: http://www.rene-schwarz.com
18 # on behalf of the German Aerospace Center (DLR)
19 # Date: 2012/01/11
20 # Filename: generate_pattern.php
21 # Version: 1.0
22 # License: GNU General Public License (GPL), version 2 or later
23 #
24 # ***
25 /**
26 * @mainpage MSISF Surface Pattern Generation Script
27 * @brief
28 * MSISF Surface Pattern Generation Script
29 *
30 * This script generates the MSISF-required surface patterns out of a spatial
31 * MySQL database for the Moon’s surface (made out of NASA LRO LOLA LDEM files).
32 *
33 * Pattern generation have only to be done once per resolution or after an
34 * modification of the database data for a certain resolution, since all
35 * generated patterns will be placed in a central pattern repository, being
36 * available for the MSISF.
37 *
38 * Please be aware that the pattern generation process for resolutions greater
39 * than LDEM_16 can require a considerable amount of time and resources,
40 * depending on your hardware configuration. Generation times in the order of
41 * weeks are not unusual.
42 *
43 * For more information, see my master’s thesis,
44 * available at <http://go.rene-schwarz.com/masters-thesis>.

165

B Code Listings

45 *
46 *
47 * Copyright (c) 2011 B.Eng. René Schwarz <mail@rene-schwarz.com>
48 * Licensed under the GNU General Public License (GPL), version 2 or later
49 *
50 *
51 *
52 * Requirements:
53 * - MySQL database loaded with lunar topographic data as specified in [1]
54 * - delaunay2D.exe, as distributed with this script
55 * - Matlab R2011b or MATLAB Compiler Runtime (MCR) v7.16
56 * - PHP >= version 5.3.9
57 *
58 *
59 * References:
60 * [1] Schwarz, René: Development of an illumination simulation software for
61 * the Moon’s surface: An approach to illumination direction estimation
62 * on pictures of planetary solid surfaces with a significant number of
63 * craters. Master’s Thesis, Merseburg University of Applied Sciences,
64 * German Aerospace Center (DLR). Books on Demand, Norderstedt, Germany,
65 * 2012.
66 *
67 *
68 * @author B.Eng. René Schwarz <mail@rene-schwarz.com>
69 * @version 1.0
70 * @date 2012/01/11
71 */
72

73

74 # Raise PHP’s memory limit to 1 GB of RAM to ensure data handling (enough up to
75 # LDEM_64). If you are trying to import LDEMs greater than 64 px/deg in resolution,
76 # increase the memory limit by testing.
77 ini_set(’memory_limit’, ’1G’);
78

79

80 # ===
81 # Configuration of the surface pattern generation process
82 # ===
83

84 # LDEM resolution (integer) to be used (preconfigured for LDEM_4, LDEM_16 and LDEM_64).
85 $LDEM = 64;
86

87 # Path to pattern repository, where all generated patterns will be placed and where
88 # all existing patterns are located (w/o trailing slash)
89 $path_patternDB = ”L:/path/to/pattern-repository”;
90

91 # Path to a temporary directory (w/o trailing slash)

166

B.4 Paern Generation Script

92 $path_tempdir = ”L:/path/to/temp-dir”;
93

94 # Path to the supplied delaunay2D.exe file (w/o trailing slash)
95 $path_delaunayHelper = ”L:/path/to/MSISF-installation/bin”;
96

97 # MySQL connection parameters
98 $mysql_host = ”localhost”; # MySQL server, e.g. ”localhost” or ”localhost:3306”
99 $mysql_db = ””; # MySQL database
100 $mysql_user = ””; # MySQL username for specified database
101 $mysql_pwd = ””; # MySQL password for specified username
102

103 # Surface pattern offset (preconfigured for LDEM_4, LDEM_16 and LDEM_64)
104 # This offset specifies the latitude and longitude, which will be added to 5°x5° as
105 # overlap area between the single surface patterns to ensure a closed 3D surface during
106 # rendering/raytracing. For resolutions greater than 64 px/deg, 0.1° should be sufficient.
107 # All values of $off are given in degrees latitude/longitude.
108 switch($LDEM)
109 {
110 case 4:
111 $off = 0.5;
112 break;
113 case 16:
114 $off = 0.5;
115 break;
116 case 64:
117 $off = 0.1;
118 break;
119 default:
120 die(”No valid LDEM dataset selected.”);
121 break;
122 }
123

124 # ===
125 # END CONFIGURATION
126 #
127 # DON’T EDIT BEYOND THIS LINE!
128 # ===
129

130

131

132 function cline($str = ””)
133 {
134 print(”{$str}\r\n”);
135 }
136

137

138 $mtime = microtime();

167

B Code Listings

139 $mtime = explode(” ”,$mtime);
140 $mtime = $mtime[1] + $mtime[0];
141 $starttime = $mtime;
142

143 cline(”Connecting to MySQL database...”);
144 $db_link = mysql_connect($mysql_host, $mysql_user, $mysql_pwd)
145 OR die(mysql_error($db_link));
146 mysql_select_db($mysql_db, $db_link) OR die(mysql_error($db_link));
147 cline(”Connection to MySQL database established.”);
148

149 for($lat = -90; $lat <= 85; $lat += 5)
150 {
151 $lat_s = $lat;
152 $lat_e = $lat + 5;
153 $lat_start = $lat - $off;
154 $lat_end = $lat + 5 + $off;
155

156 for($lon = 0; $lon <= 355; $lon += 5)
157 {
158 $mtime = explode(” ”,microtime());
159 $mtime = $mtime[1] + $mtime[0];
160 $starttime1 = $mtime;
161

162 $lon_s = $lon;
163 $lon_e = $lon + 5;
164 $lon_start = $lon - $off;
165 $lon_end = $lon + 5 + $off;
166

167 $pattern = ”LDEM_{$LDEM}_lat_{$lat_s}_{$lat_e}_lon_{$lon_s}_{$lon_e}”;
168 $special = FALSE;
169

170 if(file_exists(”{$path_patternDB}/pattern_{$pattern}.inc”))
171 {
172 cline(”Pattern {$pattern}: Pattern already exists - SKIPPING.”);
173 }
174 else
175 {
176 cline(”Pattern {$pattern}: Requesting data for pattern from database...”);
177

178 if($lon_start < 0)
179 {
180 $special = TRUE;
181 $lon_extra = $lon_start + 360;
182 $sql = ”SELECT lat, lon, x, y, z
183 FROM LDEM_{$LDEM}
184 WHERE MBRContains(GeomFromText(’POLYGON(({$lat_start} 0,
185 {$lat_start} {$lon_end}, {$lat_end} {$lon_end}, {$lat_end} 0,

168

B.4 Paern Generation Script

186 {$lat_start} 0))’), point)
187 OR MBRContains(GeomFromText(’POLYGON(({$lat_start}
188 {$lon_extra}, {$lat_start} 360, {$lat_end} 360, {$lat_end}
189 {$lon_extra}, {$lat_start} {$lon_extra}))’), point)
190 ORDER BY point_id ASC;”;
191 }
192 elseif($lon_end > 360)
193 {
194 $special = TRUE;
195 $lon_extra = $lon_end - 360;
196 $sql = ”SELECT lat, lon, x, y, z
197 FROM LDEM_{$LDEM}
198 WHERE MBRContains(GeomFromText(’POLYGON(({$lat_start}
199 {$lon_start}, {$lat_start} 360, {$lat_end} 360, {$lat_end}
200 {$lon_start}, {$lat_start} {$lon_start}))’), point)
201 OR MBRContains(GeomFromText(’POLYGON(({$lat_start} 0,
202 {$lat_start} {$lon_extra}, {$lat_end} {$lon_extra},
203 {$lat_end} 0, {$lat_start} 0))’), point)
204 ORDER BY point_id ASC;”;
205 }
206 else
207 {
208 $sql = ”SELECT lat, lon, x, y, z
209 FROM LDEM_{$LDEM}
210 WHERE MBRContains(GeomFromText(’POLYGON(({$lat_start}
211 {$lon_start}, {$lat_start} {$lon_end}, {$lat_end} {$lon_end},
212 {$lat_end} {$lon_start}, {$lat_start} {$lon_start}))’), point)
213 ORDER BY point_id ASC;”;
214 }
215

216 $res = mysql_query($sql, $db_link) OR die(mysql_error($db_link));
217

218 cline(”Pattern {$pattern}: Creating data array...”);
219 $points = array();
220 $csv = array();
221 $point_id = 0;
222 while($row = mysql_fetch_assoc($res))
223 {
224 $point_id++;
225 $points[$point_id] = array(”x” => $row[”x”]/1000,
226 ”y” => $row[”y”]/1000,
227 ”z” => $row[”z”]/1000);
228 $csv[] = ”{$row[”lat”]}, {$row[”lon”]}\r\n”;
229 }
230 unset($point_id);
231

232 file_put_contents(”{$path_tempdir}/pattern_{$pattern}.csv”, $csv);

169

B Code Listings

233 cline(”Pattern {$pattern}: Pattern (lat, lon) written to file.”);
234 unset($csv);
235

236 if($lat_start < -90 OR $lat_end > 90)
237 {
238 $special = TRUE;
239 }
240

241 if($special)
242 {
243 cline(”Pattern {$pattern}: Running Delaunay Triangulation...”);
244 exec(”\”{$path_tempdir}/delaunay2D.exe\” pattern_{$pattern} 2>&1”);
245 cline(”Pattern {$pattern}: Delaunay Triangulation finished.”);
246

247 $delaunay_template =
248 file(”{$path_tempdir}/pattern_{$pattern}_delaunay.csv”);
249 }
250 else
251 {
252 if(file_exists(”{$path_tempdir}/delaunay_template_LDEM_{$LDEM}.csv”))
253 {
254 $delaunay_template =
255 file(”{$path_tempdir}/delaunay_template_LDEM_{$LDEM}.csv”);
256 cline(”Pattern {$pattern}: Delaunay Triangulation not necessary: ▼
257 Suitable template found.”);
258 }
259 else
260 {
261 cline(”Pattern {$pattern}: No Delaunay template for standard case ▼
262 found. Running Delaunay Triangulation...”);
263 exec(”\”{$path_tempdir}/delaunay2D.exe\” pattern_{$pattern} 2>&1”);
264 cline(”Pattern {$pattern}: Delaunay Triangulation finished and ▼
265 template saved.”);
266

267 rename(”{$path_tempdir}/pattern_{$pattern}_delaunay.csv”,
268 ”{$path_tempdir}/delaunay_template_LDEM_{$LDEM}.csv”);
269

270 $delaunay_template =
271 file(”{$path_tempdir}/delaunay_template_LDEM_{$LDEM}.csv”);
272 }
273 }
274

275 cline(”Pattern {$pattern}: Creating POV-Ray file using given Delaunay ▼
276 Triangulation template...”);
277 $povrayfile = array(”mesh\r\n”,
278 ”{\r\n”);
279 for($i = 0; $i < count($delaunay_template); $i++)

170

B.4 Paern Generation Script

280 {
281 if(preg_match(”/^([0-9]{1,}),([0-9]{1,}),([0-9]{1,})[\\s]{0,}$/”,
282 $delaunay_template[$i], $matches))
283 {
284 $point_id_triang_1 = $matches[1];
285 $point_id_triang_2 = $matches[2];
286 $point_id_triang_3 = $matches[3];
287

288 $povrayfile[] = ” triangle\r\n”;
289 $povrayfile[] = ” {\r\n”;
290 $povrayfile[] = ” <{$points[$point_id_triang_1][”x”]}, ▼
291 {$points[$point_id_triang_1][”y”]}, ▼
292 {$points[$point_id_triang_1][”z”]}>, ▼
293 <{$points[$point_id_triang_2][”x”]}, ▼
294 {$points[$point_id_triang_2][”y”]}, ▼
295 {$points[$point_id_triang_2][”z”]}>, <▼
296 {$points[$point_id_triang_3][”x”]}, ▼
297 {$points[$point_id_triang_3][”y”]}, ▼
298 {$points[$point_id_triang_3][”z”]}>\r\n”;
299 $povrayfile[] = ” texture { moon }\r\n”;
300 $povrayfile[] = ” }\r\n”;
301 }
302 else
303 {
304 die(”Error: RegEx search in Delaunay template on line {$i} didn’t ▼
305 succeeed.”);
306 }
307 }
308 $povrayfile[] = ”}\r\n”;
309

310 file_put_contents(”{$path_patternDB}/{$LDEM}/pattern_{$pattern}.inc”,
311 $povrayfile, LOCK_EX);
312 unlink(”{$path_tempdir}/pattern_{$pattern}.csv”);
313 if(file_exists(”{$path_tempdir}/pattern_{$pattern}_delaunay.csv”))
314 {
315 unlink(”{$path_tempdir}/pattern_{$pattern}_delaunay.csv”);
316 }
317 cline(”Pattern {$pattern}: Pattern written to POV-Ray file.”);
318

319 unset($povrayfile);
320 unset($delaunay_template);
321 unset($points);
322 }
323 $mtime = explode(” ”,microtime());
324 $mtime = $mtime[1] + $mtime[0];
325 $endtime1 = $mtime;
326 $totaltime1 = ($endtime1 - $starttime1);

171

B Code Listings

327 cline(”Pattern {$pattern}: Calculation took {$totaltime1} sec.”);
328 cline();
329 }
330 }
331

332 cline();
333 cline();
334 mysql_close($db_link) OR die(mysql_error($db_link));
335 cline(”MySQL connection closed.”);
336

337

338 $mtime = microtime();
339 $mtime = explode(” ”,$mtime);
340 $mtime = $mtime[1] + $mtime[0];
341 $endtime = $mtime;
342 $totaltime = ($endtime - $starttime);
343

344 cline();
345 cline(”Operation has finished.”);
346 cline(”Peak memory needed: ” . (memory_get_peak_usage()/(1024*1024)) . ” MiB, total ▼
347 execution time: {$totaltime} sec.”);
348

349 ?>

172

Bibliography

Astrodynamics/Celestial Mechanics

[1] Bretagnon, P.; Francou, G.: Planetary theories in rectangular and spherical
variables – VSOP 87 solutions. In: Astronomy and Astrophysics 202 (1-
2): 309–315. IET, Stevenage, UK, 08/1988. ISSN 0004-6361. Online avail-
able at http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1988A%26A...202.
.309B&data_type=PDF_HIGH&type=PRINTER&filetype=.pdf.

[2] Efroimsky, Michael: Equations for the Keplerian Elements: Hidden Symmetry. Preprint
No. 1844 of the IMA (Institute of Applied Mathematics and its Applications), Univer-
sity of Minnesota, February 1, 2002. Online available at http://adsabs.harvard.edu/abs/
2002ima..rept....1E.

[3] H.M. Nautical Almanac Office (ed.): Explanatory Supplement to the Astronomical
Ephemeris and the American Ephemeris and Nautical Almanac. Fourth impression (with
amendents). Her Majesty’s Stationery Office, London, 1977. ISBN 0-11-880578-9.

[4] Montenbruck, Oliver; Gill, Eberhard: Satellite Orbits: Models, Methods, Applications.
1st edition 2000, corrected 3rd printing. Springer, Berlin, Heidelberg, 2005. ISBN 978-
3540672807.

[5] Murray, Carl D.; Dermo, Stanley F.: Solar System Dynamics. Fourth printing, 2006.
Cambridge University Press, New York, USA, 1999. ISBN 978-0-521-57597-3.

[6] NASA (ed.): A Standardized Lunar Coordinate System for the Lunar Reconnaissance
Orbiter and Lunar Datasets. LRO Project and LGCWG White Paper, Version
5. NASA, October 1, 2008. Online available at http://lunar.gsfc.nasa.gov/library/
LunCoordWhitePaper-10-08.pdf.

[7] Seidelmann, P. K.; Archinal, B. A.; A’Hearn, M. F.; Cruikshank, D. P.; Hilton, J. L.;
Keller, H. U.; Oberst, J.; Simon, J. L.; Stooke, P.; olen, D. J.; omas, P. C.: Report
Of e IAU/IAG Working Group On Cartographic Coordinates And Rotational Elements:
2003. In: Celestial Mechanics and Dynamical Astronomy 91 (3-4): 203–215. Springer,

173

http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1988A%26A...202..309B&data_type=PDF_HIGH&type=PRINTER&filetype=.pdf
http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1988A%26A...202..309B&data_type=PDF_HIGH&type=PRINTER&filetype=.pdf
http://adsabs.harvard.edu/abs/2002ima..rept....1E
http://adsabs.harvard.edu/abs/2002ima..rept....1E
http://lunar.gsfc.nasa.gov/library/LunCoordWhitePaper-10-08.pdf
http://lunar.gsfc.nasa.gov/library/LunCoordWhitePaper-10-08.pdf

Bibliography

2005. ISSN 0923-2958. DOI 10.1007/s10569-004-3115-4. Preprint available online: http:
//astrogeology.usgs.gov/Projects/WGCCRE/WGCCRE2003preprint.pdf.

[8] Seidelmann, P. Kenneth (ed.): Explanatory Supplement to the Astronomical Almanac.
First paperback impression. University Science Books, Sausalito, California, USA, 2006.
ISBN 978-1-891389-45-0.

[9] Seidelmann, P. Kenneth; Archinal, B. A.; A’Hearn, M. F.; Conrad, A.; Consolmagno,
G. J.; Hestroffer, D.; Hilton, J. L.; Krasinsky, G. A.; Neumann, G.; Oberst, J.; Stooke,
P.; Tedesco, E. F.; olen, D. J.; omas, P. C.; Williams, I. P.: Report of the IAU/IAG
Working Group on cartographic coordinates and rotational elements: 2006. In: Celestial
Mechanics and Dynamical Astronomy 98 (3): 155–180. Springer, 2007. ISSN 0923-2958.
DOI 10.1007/s10569-007-9072-y. Open Access: http://www.springerlink.com/content/
e637756732j60270/fulltext.pdf.

[10] Sidi, Marcel J.: Spacecra Dynamics and Control: A Practical Engineering Approach. First
paperback edition, reprinted 2006. Cambridge University Press, New York, 2000. ISBN
978-0-521-78780-2.

[11] Standish, E. Myles; Williams, James G.: Orbital Ephemerides of the Sun,
Moon and Planets. Online available at ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/
ExplSupplChap8.pdf. Retrieved 2011/05/15.

[12] Wertz, James R. (ed.): Spacecra Aitude Determination and Control. Astrophysics and
Space Science Library 73. First edition, tenth reprint, 2002. Kluwer Academic Publishers,
Dordrecht, e Netherlands, 1978. ISBN 978-9027712042.

[13] Wikipedia (ed.): Argument of periapsis. Online available at http://en.wikipedia.org/w/
index.php?title=Argument_of_periapsis&oldid=450370870. Retrieved 2011/10/29.

[14] Wikipedia (ed.): Eccentric anomaly. Online available at http://en.wikipedia.org/w/index.
php?title=Eccentric_anomaly&oldid=416453169. Retrieved 2011/10/29.

[15] Wikipedia (ed.): Eccentricity vector. Online available at http://en.wikipedia.org/w/index.
php?title=Eccentricity_vector&oldid=443226923. Retrieved 2011/10/29.

[16] Wikipedia (ed.): Longitude of the ascending node. Online available at http://en.wikipedia.
org/w/index.php?title=Longitude_of_the_ascending_node&oldid=453399307. Retrieved
2011/10/29.

[17] Wikipedia (ed.): Orbital eccentricity. Online available at http://en.wikipedia.org/w/
index.php?title=Orbital_eccentricity&oldid=453223480. Retrieved 2011/10/29.

174

http://dx.doi.org/10.1007/s10569-004-3115-4
http://astrogeology.usgs.gov/Projects/WGCCRE/WGCCRE2003preprint.pdf
http://astrogeology.usgs.gov/Projects/WGCCRE/WGCCRE2003preprint.pdf
http://dx.doi.org/10.1007/s10569-007-9072-y
http://www.springerlink.com/content/e637756732j60270/fulltext.pdf
http://www.springerlink.com/content/e637756732j60270/fulltext.pdf
ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/ExplSupplChap8.pdf
ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/ExplSupplChap8.pdf
http://en.wikipedia.org/w/index.php?title=Argument_of_periapsis&oldid=450370870
http://en.wikipedia.org/w/index.php?title=Argument_of_periapsis&oldid=450370870
http://en.wikipedia.org/w/index.php?title=Eccentric_anomaly&oldid=416453169
http://en.wikipedia.org/w/index.php?title=Eccentric_anomaly&oldid=416453169
http://en.wikipedia.org/w/index.php?title=Eccentricity_vector&oldid=443226923
http://en.wikipedia.org/w/index.php?title=Eccentricity_vector&oldid=443226923
http://en.wikipedia.org/w/index.php?title=Longitude_of_the_ascending_node&oldid=453399307
http://en.wikipedia.org/w/index.php?title=Longitude_of_the_ascending_node&oldid=453399307
http://en.wikipedia.org/w/index.php?title=Orbital_eccentricity&oldid=453223480
http://en.wikipedia.org/w/index.php?title=Orbital_eccentricity&oldid=453223480

Computer Vision (General)

[18] Wikipedia (ed.): Orbital inclination. Online available at http://en.wikipedia.org/w/
index.php?title=Orbital_inclination&oldid=452407742. Retrieved 2011/10/29.

[19] Wikipedia (ed.): True anomaly. Online available at http://en.wikipedia.org/w/index.
php?title=True_anomaly&oldid=427251318. Retrieved 2011/05/15.

[20] Williams, J. G.; Boggs, D. H.; Folkner, W. M.: DE421 Lunar Orbit, Physical Librations,
and Surface Coordinates. JPL Interoffice Memorandum IOM 335-JW,DB,WF-20080314-
001. JPL/California Institute of Technology, March 14, 2008. Online available at ftp:
//ssd.jpl.nasa.gov/pub/eph/planets/ioms/de421_moon_coord_iom.pdf.

Computer Vision (General)

[21] Bredis, Kristian; Lorenz, Dirk: Mathematische Bildverarbeitung – Einührung in
Grundlagen und moderne eorie. 1. Auflage. Vieweg+Teubner Verlag, Wiesbaden, 2011.
ISBN 978-3-8348-1037-3.

[22] Glassner, Andrew S. (ed.): An Introduction to Ray Tracing. Eighth printing. Morgan
Kaufmann, San Francisco, California, USA, 2000. ISBN 978-0122861604.

[23] Pharr, Ma; Humphreys, Greg: Physically Based Rendering: From eory to
Implementation. Second edition. Morgan Kaufmann, Elsevier, Burlington, MA, USA,
2010. ISBN 978-0-12-375079-2.

[24] Suffern, Kevin: Ray Tracing from the Ground Up. A K Peters, Wellesley, Massachuses,
USA, 2007. ISBN 978-1568812724.

Illuminance Flow Estimation

[25] Brooks, Michael J.; Horn, Berthold K. P.: Shape: And source from shading. In: Pro-
ceedings of the Ninth International Joint Conference on Artificial Intelligence 2: 932–936.
International Joint Conferences on Artificial Intelligence Organization, USA, 1985. On-
line available at http://ijcai.org/Past%20Proceedings/IJCAI-85-VOL2/PDF/052.pdf.

[26] Chantler, M.; Petrou, M.; Penirsche, A.; Schmidt, M.; McGunnigle, G.: Classifying
Surface Texture while Simultaneously Estimating Illumination Direction. In: International
Journal of Computer Vision 62 (1/2): 83–96. Springer Science, Netherlands, 2005. ISSN
0920-5691. DOI 10.1023/B:VISI.0000046590.98379.19.

175

http://en.wikipedia.org/w/index.php?title=Orbital_inclination&oldid=452407742
http://en.wikipedia.org/w/index.php?title=Orbital_inclination&oldid=452407742
http://en.wikipedia.org/w/index.php?title=True_anomaly&oldid=427251318
http://en.wikipedia.org/w/index.php?title=True_anomaly&oldid=427251318
ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de421_moon_coord_iom.pdf
ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de421_moon_coord_iom.pdf
http://ijcai.org/Past%20Proceedings/IJCAI-85-VOL2/PDF/052.pdf
http://dx.doi.org/10.1023/B:VISI.0000046590.98379.19

Bibliography

[27] Chantler, M. J.: Why illuminant direction is fundamental to texture analysis. In: IEE
Proceedings of Vision, Image and Signal Processing 142 (4): 199–206. 08/1995. ISSN 1350-
245X. DOI 10.1049/ip-vis:19952065.

[28] Chantler, M. J.; Delguste, G. B.: Illuminant-tilt estimation from images of isotropic
texture. In: IEE Proceedings of Vision, Image and Signal Processing 144 (4): 213–219.
08/1997. ISSN 1350-245X. DOI 10.1049/ip-vis:19971302.

[29] Chantler, Mike;McGunnigle, Ged; Penirschke, Andreas; Petrou, Maria: Estimating
Lighting Direction and Classifying Textures. In: Proceedings of the 2002 British Machine
Vision Conference, Cardiff : 737–746.eBritishMachine VisionAssociation and Society
for Paern Recognition, UK, 2001. Online available at http://www.bmva.org/bmvc/2002/
papers/79/full_79.pdf.

[30] Chojnacki, Wojciech; Brooks, Michael J.; Gibbins, Danny: Revisiting Pentland’s
estimator of light source direction. In: Journal of the Optical Society of Amer-
ica A 11 (1): 118–124. e Optical Society, Washington, DC, USA, 1994. DOI
10.1364/JOSAA.11.000118.

[31] Chow, Chi Kin; Yuen, Shiu Yin: Illumination direction estimation for augmented
reality using a surface input real valued output regression network. In: Paern Recog-
nition 43 (4): 1700–1716. Paern Recognition Society, Elsevier, April 2010. DOI
10.1016/j.patcog.2009.10.008.

[32] Hara, Kenji; Nishino, Ko; Ikeuchi, Katsushi: Light Source Position and Reflectance
Estimation from a Single View without e Distant Illumination Assumption. In: IEEE
Transactions on Paern Analysis and Machine Intelligence 27 (4): 493–505. IEEE, Los
Alamitos, CA, USA, April 2005. ISSN 0162-8828. DOI 10.1109/TPAMI.2005.82.

[33] Horn, Berthold: Obtaining shape from shading information. In: Winston, P. H. (ed.): e
Psychology of Computer Vision: 115–155. McGraw-Hill, New York, USA, 04/1975. ISBN
978-0070710481. Online available at http://people.csail.mit.edu/bkph/articles/Shape_
from_Shading.pdf. Retrieved 2011/04/08.

[34] Karlsson, Dan Stefan Mikael: Illuminance Flow. esis. Utrecht University,
Netherlands, 2010. Online available at http://igitur-archive.library.uu.nl/dissertations/
2010-0114-200210/karlsson.pdf.

[35] Karlsson, Stefan; Pont, Sylvia; Koenderink, Jan: Illuminance flow over anisotropic
surfaces. In: Journal of the Optical Society of America A 25 (2): 282–291. e Opti-
cal Society of America, Washington, DC, USA, February 2008. ISSN 1084-7529. DOI
10.1364/JOSAA.25.000282.

176

http://dx.doi.org/10.1049/ip-vis:19952065
http://dx.doi.org/10.1049/ip-vis:19971302
http://www.bmva.org/bmvc/2002/papers/79/full_79.pdf
http://www.bmva.org/bmvc/2002/papers/79/full_79.pdf
http://dx.doi.org/10.1364/JOSAA.11.000118
http://dx.doi.org/10.1016/j.patcog.2009.10.008
http://dx.doi.org/10.1109/TPAMI.2005.82
http://people.csail.mit.edu/bkph/articles/Shape_from_Shading.pdf
http://people.csail.mit.edu/bkph/articles/Shape_from_Shading.pdf
http://igitur-archive.library.uu.nl/dissertations/2010-0114-200210/karlsson.pdf
http://igitur-archive.library.uu.nl/dissertations/2010-0114-200210/karlsson.pdf
http://dx.doi.org/10.1364/JOSAA.25.000282

Illuminance Flow Estimation

[36] Karlsson, Stefan M.; Pont, Sylvia; Koenderink, Jan: Illuminance flow over anisotropic
surfaces with arbitrary viewpoint. In: Journal of the Optical Society of America A 26 (5):
1250–1255. e Optical Society of America, Washington, DC, USA, May 2009. ISSN
1084-7529. DOI 10.1364/JOSAA.26.001250.

[37] Karlsson, Stefan M.; Pont, Sylvia C.; Koenderink, Jan J.; Zisserman, Andrew:
Illuminance Flow Estimation by Regression. In: International Journal of Computer Vi-
sion 90 (3): 304–312. Springer, 12/2010. ISSN 0920-5691 (printed), 1573-1405 (electronic).
DOI 10.1007/s11263-010-0353-7.

[38] Knill, David C.: Estimating illuminant direction and degree of surface relief. In: Journal
of the Optical Society of America A 7 (4): 759–775. e Optical Society, Washington, DC,
USA, 04/1990. ISSN 1084-7529. DOI 10.1364/JOSAA.7.000759.

[39] Koenderink, Jan J.; Pont, Sylvia C.: Irradiation direction from texture. In: Journal of
the Optical Society of America A 20 (10): 1875–1882. e Optical Society of America,
Washington, DC, USA, October 2003. ISSN 1084-7529. DOI 10.1364/JOSAA.20.001875.

[40] Koenderink, Jan J.; van Doorn, Andrea J.; Kappers, Astrid M. L.; te Pas, Susan F.;
Pont, Sylvia C.: Illumination direction from texture shading. In: Journal of the Optical
Society of America A 20 (6): 987–995. Optical Society of America, June 2003. ISSN 1084-
7529. DOI 10.1364/JOSAA.20.000987.

[41] Koenderink, Jan J.; van Doorn, Andrea J.; Pont, Sylvia C.: Perception of illuminance
flow in the case of anisotropic rough surfaces. In: Aention, Perception, & Psychophysics
69 (6): 895–903. Springer, New York, 2007. ISSN 1943-3921. DOI 10.3758/BF03193926.

[42] Li, Yuanzhen; Lin, Stephen; Lu, Hanqing; Shum, Heung-Yeung: Multiple-cue
Illumination Estimation in Textured Scenes. In: IEEE Proceedings of the 9th International
Conference on Computer Vision 2: 1366–1373. IEEE, Nice, France, October 2003. ISBN
0-7695-1950-4. DOI 10.1109/ICCV.2003.1238649.

[43] Lladó, X.; Oliver, A.; Petrou, M.; Freixenet, J.;Martí, J.: Simultaneous surface texture
classification and illumination tilt angle prediction. Research paper for the 2003 British
Machine Vision Conference, Norwich.e British Machine Vision Association and Soci-
ety for Paern Recognition, UK, 2003. Online available at http://www.bmva.org/bmvc/
2003/papers/34/paper034.pdf.

[44] Maki, Atsuto: Estimation of illuminant direction and surface reconstruction by Geotensity
constraint. In: Paern Recognition Leers 21 (13-14): 1115–1123. Elsevier Science B.V.,
Netherlands, 12/2000. ISSN 0167-8655. DOI 10.1016/S0167-8655(00)00072-6.

177

http://dx.doi.org/10.1364/JOSAA.26.001250
http://dx.doi.org/10.1007/s11263-010-0353-7
http://dx.doi.org/10.1364/JOSAA.7.000759
http://dx.doi.org/10.1364/JOSAA.20.001875
http://dx.doi.org/10.1364/JOSAA.20.000987
http://dx.doi.org/10.3758/BF03193926
http://dx.doi.org/10.1109/ICCV.2003.1238649
http://www.bmva.org/bmvc/2003/papers/34/paper034.pdf
http://www.bmva.org/bmvc/2003/papers/34/paper034.pdf
http://dx.doi.org/10.1016/S0167-8655(00)00072-6

Bibliography

[45] Nillius, Peter; Eklundh, Jan-Olof: Automatic Estimation of the Projected Light Source
Direction. In: 2001 IEEE Computer Society Conference on Computer Vision and Paern
Recognition (CVPR’01) 1: I-1076–I-1083. IEEE Computer Society, Los Alamitos, CA, USA,
2001. ISSN 1063-6919. ISBN 0-7695-1272-0. DOI 10.1109/CVPR.2001.990650.

[46] Pentland, Alex P.: Finding the illuminant direction. In: Journal of the Optical Society of
America 72 (4): 448–455. e Optical Society of America, Washington, DC, USA, April
1982. DOI 10.1364/JOSA.72.000448.

[47] Pont, Sylvia; Koenderink, Jan: Surface Illuminance Flow. In: Proceedings of the
2nd International Symposium on 3D Data Processing, Visualization, and Transmission
(3DPVT’04) : 2–9. IEEE Computer Society, essaloniki, Greece, 2004. DOI 10.1109/TD-
PVT.2004.1335134.

[48] Pont, Sylvia C.; Koenderink, Jan J.: Illuminance Flow. In: Computer Analysis of Images
and Paerns : 90–97. Lecture Notes in Computer Science 2756. Springer-Verlag, Berlin,
Heidelberg, 2003. DOI 10.1007/978-3-540-45179-2_12.

[49] Pont, Sylvia C.; Koenderink, Jan J.: Irradiation Orientation from Obliquely Viewed
Texture. In: Deep Structure, Singularities, and Computer Vision : 205–210. Lecture
Notes in Computer Science 3753. Springer-Verlag, Berlin, Heidelberg, 2005. DOI
10.1007/11577812_18.

[50] Samaras, Dimitrios; Metaxas, Dimitris: Coupled Lighting Direction and Shape
Estimation from Single Images. In: IEEE Proceedings of the 7th International Conference
on Computer Vision 2: 868–874. IEEE, Kerkyra, Greece, September 1999. ISBN 0-7695-
0164-8. DOI 10.1109/ICCV.1999.790313.

[51] Stauder, Jürgen: Point Light Source Estimation from Two Images and Its Limits. In:
International Journal of Computer Vision 36 (3): 195–220. Kluwer Academic Publishers,
Boston, 2000. DOI 10.1023/A:1008177019313.

[52] Varma, Manik; Zisserman, Andrew: Estimating Illumination Direction from Textured
Images. In: 2004 IEEE Computer Society Conference on Computer Vision and Paern Recog-
nition (CVPR’04) 1: 179–186. IEEE Computer Society, Los Alamitos, CA, USA, 2004. ISSN
1063-6919. DOI 10.1109/CVPR.2004.95.

[53] Weber, Martin; Cipolla, Roberto: A Practical Method for Estimation of Point
Light-Sources. In: Proceedings of the 2001 BritishMachine Vision Conference, Manchester 2:
471–480. e British Machine Vision Association and Society for Paern Recognition,
UK, 2001. Online available at http://www.bmva.org/bmvc/2001/papers/117/accepted_
117.pdf.

178

http://dx.doi.org/10.1109/CVPR.2001.990650
http://dx.doi.org/10.1364/JOSA.72.000448
http://dx.doi.org/10.1109/TDPVT.2004.1335134
http://dx.doi.org/10.1109/TDPVT.2004.1335134
http://dx.doi.org/10.1007/978-3-540-45179-2_12
http://dx.doi.org/10.1007/11577812_18
http://dx.doi.org/10.1109/ICCV.1999.790313
http://dx.doi.org/10.1023/A:1008177019313
http://dx.doi.org/10.1109/CVPR.2004.95
http://www.bmva.org/bmvc/2001/papers/117/accepted_117.pdf
http://www.bmva.org/bmvc/2001/papers/117/accepted_117.pdf

Mathematics/Physics in General, Numerical Analysis and Computational Science

[54] Wong, Kwan-Yee; Schnieders, Dirk; Li, Shuda: Recovering Light Directions and Camera
Poses from a Single Sphere. In: Proceedings of the 10th European Conference on Computer
Vision: Part I (ECCV’08), Marseille, France : 631–642. Springer-Verlag, Berlin, Heidelberg,
2008. ISBN 978-3-540-88681-5. DOI 10.1007/978-3-540-88682-2_48.

[55] Zheng, Qinfen; Chellappa, Rama: Estimation of Illuminant Direction, Albedo, and Shape
from Shading. In: IEEE Transactions on Paern Analysis and Machine Intelligence 13 (7):
680–702. IEEE Computer Society, Los Alamitos, CA, USA, 1991. ISSN 0162-8828. DOI
10.1109/34.85658.

[56] Zhou, Wei; Kambhameu, Chandra: Estimation of Illuminant Direction and Intensity
of Multiple Light Sources. In: Proceedings of the 7th European Conference on Computer
Vision: Part IV (ECCV’02), Copenhagen, Denmark : 206–220. Lecture Notes in Computer
Science 2353. Springer-Verlag, Berlin, Heidelberg, 2006. DOI 10.1007/3-540-47979-1_14.

Mathematics/Physics in General, Numerical Analysis and
Computational Science

[57] Abramowitz, Milton; Stegun, Irene A.: Handbook of Mathematical Functions. 10th
printing. U.S. Department of Commerce, National Bureau of Standards, Washington,
D.C., USA, December 1972

[58] Engeln-Müllges, Gisela; Schäfer, Wolfgang; Trippler, Gisela: Kompaktkurs
Ingenieurmathematik. Mit Wahrscheinlichkeitsrechnung und Statistik. 3., neu bearbeit-
ete und erweiterte Auflage. Fachbuchverlag Leipzig, 2004. ISBN 9783446228641.

[59] Hanke-Bourgeois, Martin: Grundlagen der Numerischen Mathematik und des
Wissenschalichen Rechnens. 3., aktualisierte Auflage. Vieweg+Teubner Verlag, Wies-
baden, 2009. ISBN 978-3-8348-0708-3.

[60] Hilbert, Alfred: Mathematik. 1. Auflage. VEB Fachbuchverlag Leipzig, 1987. ISBN
3-343-00248-8.

[61] Jaworski, Boris M.; Detlaf, A. A.: Physik-Handbuch ür Studium und Beruf. Verlag
Harri Deutsch, un/Frankfurt/Main, 1986. ISBN 3-87-144-804-4.

[62] Körner, Wolfgang; Hausmann, Ewald; Kießling, Günther; Mende, Dietmar; Spretke,
Hellmut: Physik: Fundament der Technik. 10. Auflage. VEB Fachbuchverlag Leipzig,
1989. ISBN 3-343-00240-2.

179

http://dx.doi.org/10.1007/978-3-540-88682-2_48
http://dx.doi.org/10.1109/34.85658
http://dx.doi.org/10.1007/3-540-47979-1_14

Bibliography

[63] Kuipers, Jack B.: aternions and Rotation Sequences: A Primer with Applications to
Orbits, Aerospace, and Virtual Reality. 5th printing, and first paperback printing. Prince-
ton University Press, Princeton, New Jersey, USA, 2002. ISBN 978-0-691-10298-6.

[64] Merzinger, Gerhard;Mühlbach, Günter;Wille, Detlef;Wirth, omas: Formeln und
Hilfen zur höheren Mathematik. 4. Auflage. Binomi Verlag, Springe, Oktober 2004. ISBN
3-923923-35-X.

[65] Meschede, Dieter: Gerthsen Physik. 23., überarbeitete Auflage. Springer, Berlin, 2006.
ISBN 978-3-540-25421-8.

[66] Papula, Lothar: Mathematik ür Ingenieure und Naturwissenschaler. Band 1. 10., er-
weiterte Auflage. Vieweg, Braunschweig/Wiesbaden, Oktober 2001. ISBN 3-528-94236-3.

[67] Wikipedia (ed.): aternions and spatial rotation. Online available at http://en.
wikipedia.org/w/index.php?title=Quaternions_and_spatial_rotation&oldid=484703420.
Retrieved 2012/04/02.

[68] Zurmühl, Rudolf: Matrizen und ihre technischen Anwendungen. 4., neubearbeitete Au-
flage. Springer, Berlin, 1964

Scientific Tables/Conventions, Works of Reference,
Algorithms

[69] Ley, Wilfried (ed.); Wimann, Klaus (ed.); Hallmann, Willi (ed.): Handbuch der
Raumfahrechnik. 3., völlig neu bearbeitete und erweiterte Auflage. Hanser Verlag,
München, 2008. ISBN 9783446411852.

[70] Meeus, Jean: Astronomical Algorithms. Second edition, 1998. Willmann-Bell, Richmond,
Virginia, USA, 2009. ISBN 9780943396613.

[71] Müller, Edith A. (ed.): Proceedings of the Sixteenth General Assembly, Grenoble 1976.
Transactions of the International Astronomical Union XVIB. International Astronomi-
cal Union, Kluwer Academic Publishers, 1977. ISBN 90-277-0836-3.

[72] Mohr, Peter J.; Taylor, Barry N.: CODATA recommended values of the fundamental
physical constants: 1998. In: Review ofModern Physics 72 (2): 351–495. American Physical
Society, April 2000. DOI 10.1103/RevModPhys.72.351.

[73] Mohr, Peter J.; Taylor, Barry N.: CODATA recommended values of the fundamental
physical constants: 2002. In: Review of Modern Physics 77 (1): 1–107. American Physical
Society, January 2005. DOI 10.1103/RevModPhys.77.1.

180

http://en.wikipedia.org/w/index.php?title=Quaternions_and_spatial_rotation&oldid=484703420
http://en.wikipedia.org/w/index.php?title=Quaternions_and_spatial_rotation&oldid=484703420
http://dx.doi.org/10.1103/RevModPhys.72.351
http://dx.doi.org/10.1103/RevModPhys.77.1

Spacecra Engineering

[74] Mohr, Peter J.; Taylor, Barry N.; Newell, David B.: CODATA recommended values of
the fundamental physical constants: 2006. In: Review of Modern Physics 80 (2): 633–730.
American Physical Society, 2008. ISSN 1539-0756. DOI 10.1103/RevModPhys.80.633. On-
line available at http://physics.nist.gov/cuu/Constants/RevModPhys_80_000633acc.pdf.

[75] NASA/JPL (ed.): Astrodynamic Constants. NASA/JPL/SSD website, 2011. Online avail-
able at http://ssd.jpl.nasa.gov/?constants. Retrieved 2011/04/26.

[76] NASA/JPL (ed.): Planetary Data System Standards Reference. Version 3.8. Jet Propul-
sion Laboratory, JPL D-7669, Part 2. JPL/California Institute of Technology, February
27, 2009. Online available at http://pds.nasa.gov/tools/standards-reference.shtml. Re-
trieved 2012/03/19.

[77] U.S. Nautical Almanac Office (ed.): e Astronomical Almanac for the Year 2011. U.S.
Government Printing Office, Washington, 2010. ISBN 978-0-7077-41031.

[78] Wieczorek, Mark A.; Jolliff, Bradley L.; Khan, Amir; Pritchard, Mahew E.; Weiss,
Benjamin P.; Williams, James G.; Hood, Lon L.; Righter, Kevin; Neal, Clive R.;
Shearer, Charles K.; McCallum, I. Stewart; Tompkins, Stephanie; Hawke, B. Ray; Pe-
terson, Chris; Gillis, Jeffrey J.; Bussey, Ben: e Constitution and Structure of the
Lunar Interior. In: Reviews in Mineralogy and Geochemistry 60 (1): 221–364. 2006. DOI
10.2138/rmg.2006.60.3. Online available at http://scripts.mit.edu/~paleomag/articles/60_
03_Wieczorek_etal.pdf.

Spacecra Engineering

[79] Fortescue, Peter (ed.); Stark, John (ed.); Swinerd, Graham (ed.): Spacecra Systems
Engineering. ird edition. Wiley, England, 2003. ISBN 0-471-61951-5.

[80] Wertz, James R. (ed.); Larson, Wiley J. (ed.): Space Mission Analysis and Design. Space
Technology Series 8. ird edition, tenth printing, 2008. Microcosm Press & Springer,
New York, 1999. ISBN 9780792359012.

Other Topics

[81] Araki, H.; Tazawa, S.; Noda, H.; Ishihara, Y.; Goossens, S.; Sasaki, S.; Kawano, N.;
Kamiya, I.; Otake, H.; Oberst, J.; Shum, C.: Lunar Global Shape and Polar Topography
Derived from Kaguya-LALT Laser Altimetry. In: Science 323 (5916): 897–900. 2009. DOI
10.1126/science.1164146.

181

http://dx.doi.org/10.1103/RevModPhys.80.633
http://physics.nist.gov/cuu/Constants/RevModPhys_80_000633acc.pdf
http://ssd.jpl.nasa.gov/?constants
http://pds.nasa.gov/tools/standards-reference.shtml
http://dx.doi.org/10.2138/rmg.2006.60.3
http://scripts.mit.edu/~paleomag/articles/60_03_Wieczorek_etal.pdf
http://scripts.mit.edu/~paleomag/articles/60_03_Wieczorek_etal.pdf
http://dx.doi.org/10.1126/science.1164146

Bibliography

[82] Bundesministerium ür Wirtscha und Technologie (ed.): Für eine zukunsähige
deutsche Raumfahrt: Die Raumfahrtstrategie der Bundesregierung. Bundesmin-
isterium ür Wirtscha und Technologie, November 2010. Online available
at http://www.bmwi.de/BMWi/Redaktion/PDF/B/zukunftsfaehige-deutsche-raumfahrt,
property=pdf,bereich=bmwi,sprache=de,rwb=true.pdf.

[83] Chin, Gordon; Brylow, Sco; Foote, Marc; Garvin, James; Kasper, Justin; Keller,
John; Litvak, Maxim;Mitrofanov, Igor; Paige, David; Raney, Keith; Robinson, Mark;
Sanin, Anton; Smith, David; Spence, Harlan; Spudis, Paul; Stern, S.; Zuber, Maria:
Lunar Reconnaissance Orbiter Overview: e Instrument Suite and Mission. In: Space Sci-
ence Reviews 129: 391–419. Springer Netherlands, April, 2007. ISSN 0038-6308. DOI
10.1007/s11214-007-9153-y. Online available at http://lro.gsfc.nasa.gov/library/LRO_
Space_Science_Paper.pdf.

[84] Connolly, John F.: Constellation Program Overview. NASA, Constellation Pro-
gram Office, October 2006. Online available at http://www.nasa.gov/pdf/163092main_
constellation_program_overview.pdf.

[85] DLR (ed.): Flug über den dreidimensionalen Mond. Website of the German
Aerospace Center (DLR), November 21, 2011. Online available at http://www.dlr.de/
dlr/desktopdefault.aspx/tabid-10081/151_read-2065/. Retrieved 2012/04/01.

[86] ESA (ed.): e Aurora Programme. European Space Agency Publications Division,
e Netherlands, 2004. Online available at http://esamultimedia.esa.int/docs/Aurora/
Aurora625_2.pdf.

[87] ISECG (ed.): e Global Exploration Roadmap. International Space Exploration Co-
ordination Group (ISECG), NASA, Washington, September 2011. Online available at
http://www.nasa.gov/pdf/591067main_GER_2011_small_single.pdf.

[88] Johnson, Andrew E.; Ansar, Adnan; Mahies, Larry H.; Trawny, Nikolas; Mourikis,
Anastasios I.; Roumeliotis, Stergios I.: A General Approach to Terrain Relative
Navigation for Planetary Landing. In: 2007 AIAA Conference and Exhibit, May 7–10,
2007, Rohnert Park, California : 1–9. American Institute of Aeronautics and Astronau-
tics, 2007. Online available at http://www-users.cs.umn.edu/~stergios/papers/AIAA_
Infotech07.pdf.

[89] Johnson, Andrew E.; Montgomery, James F.: Overview of Terrain Relative Navigation
Approaches for Precise Lunar Landing. In: 2008 IEEE Aerospace Conference, Big Sky, Mon-
tana, March 1, 2008 : 1–10. IEEEAC paper #1657, Version 2, Updated December 14, 2008.

182

http://www.bmwi.de/BMWi/Redaktion/PDF/B/zukunftsfaehige-deutsche-raumfahrt,property=pdf,bereich=bmwi,sprache=de,rwb=true.pdf
http://www.bmwi.de/BMWi/Redaktion/PDF/B/zukunftsfaehige-deutsche-raumfahrt,property=pdf,bereich=bmwi,sprache=de,rwb=true.pdf
http://dx.doi.org/10.1007/s11214-007-9153-y
http://lro.gsfc.nasa.gov/library/LRO_Space_Science_Paper.pdf
http://lro.gsfc.nasa.gov/library/LRO_Space_Science_Paper.pdf
http://www.nasa.gov/pdf/163092main_constellation_program_overview.pdf
http://www.nasa.gov/pdf/163092main_constellation_program_overview.pdf
http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151_read-2065/
http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151_read-2065/
http://esamultimedia.esa.int/docs/Aurora/Aurora625_2.pdf
http://esamultimedia.esa.int/docs/Aurora/Aurora625_2.pdf
http://www.nasa.gov/pdf/591067main_GER_2011_small_single.pdf
http://www-users.cs.umn.edu/~stergios/papers/AIAA_Infotech07.pdf
http://www-users.cs.umn.edu/~stergios/papers/AIAA_Infotech07.pdf

Other Topics

Online available at http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/41154/1/07-4467.
pdf.

[90] Maass, Bolko; Krüger, Hans; eil, Stephan: An Edge-Free, Scale-, Pose- and
Illumination-Invariant Approach to Crater Detection for Spacecra Navigation. In: Pro-
ceedings of the 7th International Symposium on Image and Signal Processing and Analysis
(ISPA 2011), Dubrovnik, Croatia, September 4-6, 2011 : 603–608. University of Zagreb,
Faculty of Electrical Engineering and Computing, Croatia, 2011. ISSN 1845-5921. ISBN
978-1-4577-0841-1.

[91] Moritz, H.: Geodetic Reference System 1980. In: Journal of Geodesy 74: 128–162.
Springer, Berlin/Heidelberg, 2000. ISSN 0949-7714. DOI 10.1007/s001900050278. On-
line available at http://www.springerlink.com/content/0bgccvjj5bedgdfu/fulltext.pdf.

[92] MySQL (ed.): MySQL 5.5 Reference Manual — 11.17.6.1. Creating Spatial Indexes. On-
line available at http://dev.mysql.com/doc/refman/5.5/en/creating-spatial-indexes.html.
Retrieved March 19, 2012.

[93] MySQL (ed.): MySQL 5.5 Reference Manual — C.5.2.10 Packet too large. Online available
at http://dev.mysql.com/doc/refman/5.5/en/packet-too-large.html. Retrieved March 19,
2012.

[94] MySQL (ed.): MySQL 5.5 Reference Manual — Chapter 13: Storage Engines. Online avail-
able at http://dev.mysql.com/doc/refman/5.5/en/storage-engines.html. Retrieved Jan-
uary 15, 2012.

[95] MySQL (ed.): MySQL 5.5 Reference Manual — Section 11.17: Spatial Extensions. Online
available at http://dev.mysql.com/doc/refman/5.5/en/spatial-extensions.html. Retrieved
January 15, 2012.

[96] NASA (ed.): e Vision for Space Exploration. NASA, February 2004. Online available at
http://www.nasa.gov/pdf/55583main_vision_space_exploration2.pdf.

[97] NASA (ed.): 2011 NASA Strategic Plan. NASA, 2011. Online available at http://www.
nasa.gov/pdf/516579main_NASA2011StrategicPlan.pdf.

[98] NASA NAIF (ed.): NAIF CSPICE Toolkit Hypertext Documentation: spkpos_c. NASA,
e Navigation and Ancillary Information Facility (NAIF), June 9, 2010. Online avail-
able at http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/spkpos_c.html. Retrieved
2012/03/31.

183

http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/41154/1/07-4467.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/41154/1/07-4467.pdf
http://dx.doi.org/10.1007/s001900050278
http://www.springerlink.com/content/0bgccvjj5bedgdfu/fulltext.pdf
http://dev.mysql.com/doc/refman/5.5/en/creating-spatial-indexes.html
http://dev.mysql.com/doc/refman/5.5/en/packet-too-large.html
http://dev.mysql.com/doc/refman/5.5/en/storage-engines.html
http://dev.mysql.com/doc/refman/5.5/en/spatial-extensions.html
http://www.nasa.gov/pdf/55583main_vision_space_exploration2.pdf
http://www.nasa.gov/pdf/516579main_NASA2011StrategicPlan.pdf
http://www.nasa.gov/pdf/516579main_NASA2011StrategicPlan.pdf
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/spkpos_c.html

Bibliography

[99] NASA NAIF (ed.): SPICE Tutorials (Merged). NASA, e Navigation and Ancillary
Information Facility (NAIF), January 2012. Online available at ftp://naif.jpl.nasa.gov/
pub/naif/toolkit_docs/Tutorials/pdf/packages/SPICE_Tutorials_Merged.pdf. Retrieved
2012/03/31.

[100] NASAOffice of Public Affairs (ed.): Global Exploration Strategy and Lunar Architecture.
NASA, Johnson Space Center, December 4, 2006. Online available at http://www.nasa.
gov/pdf/164021main_lunar_architecture.pdf.

[101] NASA (ed.): e Moon’s hourly appearance in 2012. Website of the NASA Lunar Sci-
ence Institute, March 5, 2012. Online available at http://lunarscience.nasa.gov/articles/
the-moons-hourly-appearance-in-2012/. Retrieved 2012/04/01.

[102] Neumann, Gregory A.: Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter:
Reduced Data Record and Derived Products — Soware Interface Specification. Version
2.2. NASA Goddard Space Flight Center, Greenbelt, April 28, 2009. Online available at
http://lunar.gsfc.nasa.gov/lola/images/LOLA_RDRSIS.pdf. Retrieved 2012/03/19.

[103] POV-Ray (ed.): Newsgroup povray.windows: TRUE batch mode. Newsgroup thread
at povray.windows, 2011. Online available at http://news.povray.org/povray.
windows/thread/%3Cweb.4d9c0910b00cf4ef6c1e98510@news.povray.org%3E/. Re-
trieved 2012/04/01.

[104] POV-Ray (ed.): POV-Ray 3.6 Documentation Online View: 1.4.4.7 Why are triangle meshes
in ASCII format? POV-Ray website, 2008. Online available at http://www.povray.org/
documentation/view/3.6.1/171/. Retrieved 2012/04/01.

[105] POV-Ray (ed.): POV-Ray Reference for POV-Ray Version 3.6.1. POV-Ray website, August
2004. Online available at http://www.povray.org/download/. Retrieved 2012/04/01.

[106] Schrunk, David G.; Sharpe, Burton L.; Cooper, Bonnie L.; angavelu, Madhu: e
Moon: Resources, Future Development, and Selement. Second Edition. Springer/Praxis
Publishing, Chichester, UK, 2008. ISBN 978-0-387-36055-3.

[107] Smith, David; Zuber, Maria; Jackson, Glenn; Cavanaugh, John; Neumann, Gre-
gory; Riris, Haris; Sun, Xiaoli; Zellar, Ronald; Coltharp, Craig; Connelly, Joseph;
Katz, Richard; Kleyner, Igor; Liiva, Peter; Matuszeski, Adam; Mazarico, Erwan;
McGarry, Jan; Novo-Gradac, Anne-Marie; O, Melanie; Peters, Carlton; Ramos-
Izquierdo, Luis; Ramsey, Lawrence; Rowlands, David; Schmidt, Stephen; Sco, V.;
Shaw, George; Smith, James; Swinski, Joseph-Paul; Torrence, Mark; Unger, Glenn;
Yu, Anthony; Zagwodzki, omas: e Lunar Orbiter Laser Altimeter Investigation

184

ftp://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/packages/SPICE_Tutorials_Merged.pdf
ftp://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/packages/SPICE_Tutorials_Merged.pdf
http://www.nasa.gov/pdf/164021main_lunar_architecture.pdf
http://www.nasa.gov/pdf/164021main_lunar_architecture.pdf
http://lunarscience.nasa.gov/articles/the-moons-hourly-appearance-in-2012/
http://lunarscience.nasa.gov/articles/the-moons-hourly-appearance-in-2012/
http://lunar.gsfc.nasa.gov/lola/images/LOLA_RDRSIS.pdf
http://news.povray.org/povray.windows/thread/%3Cweb.4d9c0910b00cf4ef6c1e98510@news.povray.org%3E/
http://news.povray.org/povray.windows/thread/%3Cweb.4d9c0910b00cf4ef6c1e98510@news.povray.org%3E/
http://www.povray.org/documentation/view/3.6.1/171/
http://www.povray.org/documentation/view/3.6.1/171/
http://www.povray.org/download/

Other Topics

on the Lunar Reconnaissance Orbiter Mission. In: Space Science Reviews 150: 209–241.
Springer Netherlands, 2010. ISSN 0038-6308. DOI 10.1007/s11214-009-9512-y.

[108] Wikipedia (ed.): Boris Delaunay. Online available at http://en.wikipedia.org/w/index.
php?title=Boris_Delaunay&oldid=473408519. Retrieved 2012/04/01.

[109] Wikipedia (ed.): Delaunay-Triangulation. Online available at http://de.wikipedia.org/
w/index.php?title=Delaunay-Triangulation&oldid=95943619. Retrieved 2012/04/01.

[110] Wikipedia (ed.): File:Delaunay circumcircles centers.png. Online available at http://en.
wikipedia.org/wiki/File:Delaunay_circumcircles_centers.png. Retrieved 2012/04/01.

[111] Wikipedia (ed.): File:Dolphin triangle mesh.svg. Online available at http://commons.
wikimedia.org/wiki/File:Dolphin_triangle_mesh.svg. Retrieved 2012/04/01.

[112] Wikipedia (ed.): File:Mesh overview.svg. Online available at http://en.wikipedia.org/
wiki/File:Mesh_overview.svg. Retrieved 2012/04/01.

[113] Wikipedia (ed.): William Rowan Hamilton. Online available at http://en.wikipedia.org/
w/index.php?title=William_Rowan_Hamilton&oldid=483319860. Retrieved 2012/04/02.

[114] Wiktionary (ed.): verto. Online available at http://en.wiktionary.org/w/index.php?
title=verto&oldid=16356726. Retrieved 2012/04/01.

185

http://dx.doi.org/10.1007/s11214-009-9512-y
http://en.wikipedia.org/w/index.php?title=Boris_Delaunay&oldid=473408519
http://en.wikipedia.org/w/index.php?title=Boris_Delaunay&oldid=473408519
http://de.wikipedia.org/w/index.php?title=Delaunay-Triangulation&oldid=95943619
http://de.wikipedia.org/w/index.php?title=Delaunay-Triangulation&oldid=95943619
http://en.wikipedia.org/wiki/File:Delaunay_circumcircles_centers.png
http://en.wikipedia.org/wiki/File:Delaunay_circumcircles_centers.png
http://commons.wikimedia.org/wiki/File:Dolphin_triangle_mesh.svg
http://commons.wikimedia.org/wiki/File:Dolphin_triangle_mesh.svg
http://en.wikipedia.org/wiki/File:Mesh_overview.svg
http://en.wikipedia.org/wiki/File:Mesh_overview.svg
http://en.wikipedia.org/w/index.php?title=William_Rowan_Hamilton&oldid=483319860
http://en.wikipedia.org/w/index.php?title=William_Rowan_Hamilton&oldid=483319860
http://en.wiktionary.org/w/index.php?title=verto&oldid=16356726
http://en.wiktionary.org/w/index.php?title=verto&oldid=16356726

Listings

List of Figures

1.1 TRON facility in an early and advanced stage of construction. © DLR; pictures
reproduced with friendly permission. 19

1.2 A sample 3D surface tile of the Moon used in an advanced construction stage
of TRON, illuminated with the 5 DOF illumination system: Realistic shadows
are cast. © DLR; picture reproduced with friendly permission. 20

1.3 Schematic overview of the Testbed for Robotic Optical Navigation (TRON) lab-
oratory, located at the DLR Institute of Space Systems in Bremen, as seen from
above. e lab is divided into two sections: Operations (the simulation control
room) and simulations section. At the boom and the right border of the simu-
lation section’s illustration the wall-mounted surfaces tiles are depicted. ese
tiles can be illuminated by a 5 DOF illumination system, as implied by the red
beam. e scene is then captured with sensors, i.e. optical or LIDAR sensors,
which are mounted at the tool center point of the 6 DOF industrial robot on a
rail system. Reproduced with friendly permission from [90]. 21

1.4 Extraction of crater contrast areas out of a sample picture; the vector shown
beyond is the local solar illumination vector. © DLR; reproduced from [90, p.
605] with friendly permission. 22

1.5 First results of the new crater detection algorithm on pictures of real celestial
surfaces. © DLR; pictures reproduced from [90, p. 608] with friendly permission. 23

1.6 Overview of active-sensing approaches for TRN. Only shown in completion
to figure 1.7, since these methods rely on ranging techniques, which are not
applicable to the thesis soware. (Image based on the table in [89, p. 4]) 25

187

Listings

1.7 Overview of passive-sensing approaches for terrain-relative navigation (TRN).
e thesis soware can produce renderings of planetary surfaces for all kinds
of passive-sensing approaches for TRN, indicated by fields with yellow and or-
ange backgrounds. e crater detection algorithm currently developed by DLR
within the ATON/TRON project uses the Crater Paern Matching approach,
which is marked in orange. As it can be inferred from this overview, the thesis
soware can be used not only for the current DLR project, but for all other TRN
approaches. (Image based on the table in [89, p. 4]) 26

2.1 Overview of the components of the Moon Surface Illumination Simulation
Framework (MSISF). 31

2.2 Visualization of the difference between a digital terrain model (DTM) and a
digital surface model (DSM). 32

3.1 Two distinct points on the surface of a sphere with center in the coordinate
origin O = (0, 0, 0)T and radius r. 41

3.2 Representation of an arbitrary point p using spherical coordinates with polar
angle α, azimuthal angle φ and the radial distance r to the orgin of the coordi-
nate system. 41

4.1 Plane visualization of the Clementine topographic data at the finest resolution
(4 px/deg). A visual examination of the data shows that this data set is imprac-
tical to generate a realistic surface illumination. 46

4.2 e Lunar Reconnaissance Orbiter (LRO) in a near-final construction stage.e
entire instrument suite is visible from this perspective; the Lunar Orbiter Laser
Altimeter (LOLA) is the conical instrument directly beyond the white shin-
ing plate. © NASA/Debbie McCallum. Obtained from http://www.nasa.gov/
mission_pages/LRO/multimedia/lrocraft5.html. 48

4.3 LOLA laser geometry on the ground for four consecutive shots; the num-
bers represent the channel numbers. e solid, black-filled circles indicate
the transmied laser footprints on the Moon’s surface, while the solid, con-
centric circles imply the receiver’s field of view. © NASA. Obtained from
http://lunar.gsfc.nasa.gov/lola/images/fig.pdf. 49

4.4 Visible flaws in the surface data caused by data interpolation in the preliminary
LRO LOLA LDEM products, shown on an example MSIS rendering. 51

5.1 Overview of mesh elements in computer graphics. Source: [112], License: Cre-
ative Commons Aribution-Share Alike 3.0 Unported. 68

188

List of Figures

5.2 Result of a 2D Delaunay triangulation for an example point set. e vertices
are the black filled dots, and the edges are black lines.e gray circles represent
the circumferences of each resulting triangle, while the red filled dots are the
center points of each circumference. Vectorized version of [110] by Mahias
Kopsch; License: Creative Commons Aribution-Share Alike 3.0 Unported. . . 69

5.3 A triangulated dolphin. Source: [111]; License: Public Domain. 70

8.1 Example ray tracing scene with a sphere. e sphere’s center is placed at the
origin (0, 0, 0)T of the right-handed coordinate system.ree example rays s1,
s2 and s3 are shot: s1 misses the sphere, s2 is tangential to the sphere’s surface
and s3 intersects the sphere twice. In ray 2 and 3, the intersection points can be
calculated solving equation 8.4 forλ orλ1 and λ2, respectively, and substituting
the parameter(s) into formula 8.2. 104

8.2 POV-Ray camera geometry to be used. e focal point cpos of the camera is
identical with the spacecra/camera location; cpos is a spatial coordinate within
the ME/PA reference frame. e user-given field of view angle α ordains the
length of the camera direction vector cdirection and, by implication, the distance
between the focal point cpos and the image plane Ω.
e pixels of the later rendered picture are a strict subset of all points on the
image plane Ω, which is defined by the camera-up vector cup and the camera-
right vector cright. By definition, the rendered image is an axes-parallel rectan-
gle with a width of ∥cright∥ and a height of ∥cup∥, while the axes, in this case,
are cright and cup itself; the rectangle is centered at cpos + cdirection.
cright and cup are influenced by the user-specified pixel width and height of the
image to be rendered.e determination of the camera orientation is explained
in chapter 7. 106

8.3 Illustration of paern squeezing at the poles (the orange marked area): A ren-
dering of the same surface area near the poles needs more surface paerns.e
illustration is not drawn to scale (the MSISF surface paerns are much smaller). 113

8.4 DSPSA drawbacks visible on successive renderings of a series. e time is
frozen (the Sun’s position in relation to the Moon’s position will not change),
but the camera moves along a trajectory around the Moon. e camera moves
to the image north with each picture (from le to right, top to boom).
Each le picture shows a shadow caused by an object, which is not visible in
the scene. Each right picture shows the next rendering, when the camera has
moved a lile bit upwards — some shadows disappear, because the paerns, on
which the objects causing the shadows are located, are not selected anymore.
e object, never visible itself, has disappeared, and so has its shadow. 114

189

Listings

9.1 MSIS rendering with rendering annotations activated. e red lines indicate
the local solar illumination angle for each grid sample point, which is marked
as a red dot at the beginning of the lines. e MSIS will only visualize the
illumination angle on pixels, which show the Moon’s surface (not the space
background). 117

9.2 Schematic of the local illumination angle determination principle. 124

9.3 Geometrical construction of plocal. 128

9.4 Geometrical construction of the local illumination angle α. 133

10.1 Current construction progress of the TRON facility. Visible is the floor-
mounted 6 DOF industrial robot simulating a spacecra as well as the ceiling-
mounted 5 DOF lighting system. © DLR; picture reproduced with friendly per-
mission. 141

10.2 A TRON 3D surface tile of the Moon’s surface for a project on behalf of the
European Space Agency (ESA). © DLR; picture reproduced with friendly per-
mission. 142

List of Tables

1.1 is table shows common future targets of space exploration missions includ-
ing their key objectives and challenges. (“Summary of the Destination Assess-
ment Activity”, quoted from [87, p. 15]) . 16

2.1 Hardware configuration for the machine used as test and development envi-
ronment. 35

4.1 Available LRO LOLA equi-rectangular map-projected LDEM products. Based
on [107, p. 239]. 50

4.2 Data coverage of the LOLA LDEM products for versions 1.05 and 1.07. Source:
Errata file of the LOLA PDS data node at http://imbrium.mit.edu/ERRATA.TXT. 52

4.3 MySQL query performance comparison for a 5° × 5° surface patch using stan-
dard indices (PRIMARY KEY(…)). 55

4.4 MySQL profiling for the slow query on the LDEM_64 table (all values in seconds). 55

4.5 Comparison of the storage requirements for the used LDEM resolutions distin-
guished by the intermediate and the final table layout. 57

4.6 MySQL query performance comparison for a 5°× 5° surface patch using a spa-
tial index (SPATIAL KEY …). 58

190

List of Code Listings

4.7 MySQL profiling for the optimized query on the LDEM_64 table (all values in
seconds). 58

6.1 Overview of the required command-line arguments for the different operation
modes of the MSIS. All arguments marked with" are mandatory for the re-
spective operation mode, while all arguments marked with% are not allowed
and those withd are optional. All additional arguments are optional and have
been documented in appendix A. 93

List of Code Listings

4.1 Final table layout. 56
4.2 Example content of a PDS label file. Shown here: e corresponding label file

LDEM_1024_00N_15N_330_360.LBL for a LDEM file (.img file), shortened only
to give an impression of the PDS format. 63

6.1 Implementation of the Sun position calculation using CSPICE in C++. 82
6.2 Implementation of the spacecra position calculation using Keplerian ele-

ments into the MSIS. 87
6.3 Implementation of the conversion from state vectors to Keplerian elements

into the MSIS. 90
6.4 MSIS implementation of the modified Julian date to Gregorian date/time algo-

rithm, based on Jean Meeus’ algorithm [70, p. 63]. 91

8.1 MSIS code implementation of the Dynamical Surface Paern Selection Algo-
rithm (DSPSA). 111

8.2 DPSPA invocation within the Simulation class. is code snippet has to be
executed for each image to be rendered. 112

191

Alphabetical Index

— Symbols —

i, 98
j, 98
k, 98

— A —

ATON project, 17 f.
principal objective, 18

Augustine Commission, 14
Aurora Program, 16
autonomous navigation and landing, 16 f.
Autonomous Terrain-based Optical

Navigation, see ATON project

— C —

C#, 30
camera

camera right vector, 101
initial orientation, 101
orientation, 100

Clementine mission, 45 f.
complex numbers, 98
Constellation Program, 13 f.
crater(s), 20

detection algorithm(s), 22
detection treshold(s), 23
imaging and detection, 22

CxP, see Constellation Program

— D —

Deep Space Program Science Experiment, see
Clementine mission

Delaunay triangulation, 32, 68
DEM, see Digital Elevation Model(s)
Descent Orbit Injection maneuver, 17
Digital Elevation Model(s), 18, 23, 30, 45 f., 48
DLR, see German Aerospace Center
DOI, see Descent Orbit Injection maneuver
doxygen, 81
DSPSA, 33, 80, 103 f.

implementation, 109–113
DSPSE, see Clementine mission
Dynamical Surface Paern Selection

Algorithm, see DSPSA

— E —

ESA, see European Space Agency
Euler angles, 97
European Space Agency, 16

— F —

flexible-path approach, 14
flight path control, 16 f.

— G —

GDR, 49

193

Alphabetical Index

German Aerospace Center, 17
Institute of Space Systems, 17

German national space program, 16
gimbal lock, 97
Gregorian date, 90
Gridded Data Records, see GDR

— H —

HA, see Hazard Avoidance
Hamilton, Sir William Rowan, 98
Hazard Avoidance, 18

— I —

IDE, 79
in-situ

position determination, 17
utilization of resources, 16

integrated development environment, see IDE
International Space Station, 13
ISS, see International Space Station

— J —

JAXA SELENE mission, 46 f.
JD, 90
Julian date, see JD

— K —

Kepler’s equation, 84–89
Keplerian elements, 84–89

— L —

landing place selection, 18

landmark based navigation, 17
LDEM, 32, 47, 49 f.
LEO, see Low Earth Orbit
LIDAR, 29
Light Detection and Ranging, see LIDAR
local solar illumination angle, 122–133
LOLA, 47 f., 50

data products, 48, 51
MySQL import process, 59–65

Low Earth Orbit, 13
LRO, 32, 47

instrument suite (figure), 48
laser geometry (figure), 49

Lunar Digital Elevation Model, see LDEM
lunar landing procedure, 17–20
Lunar Orbiter Laser Altimeter, see LOLA
Lunar Reconnaissance Orbiter, see LRO

— M —

Mars, 13–16
Mars-first approach, 13
MBR, see Minimum Bounding Rectangle
ME/PA, see Mean Earth/Polar Axis
Mean Earth/Polar Axis, 30, 39 f., 68, 97
mesh modeling

edges, 67
faces, 67
surfaces, 67
vertices, 67

Minimum Bounding Rectangle, 56
Mir, 13
MJD, 80, 90
modified Julian date, see MJD
Moon

flaening, 40
generalization as a sphere, 40
selenograhic latitude, 43
selenographic longitude, 43

194

Alphabetical Index

Moon Surface Illumination Simulation
Framework, see MSISF

Moon Surface Illumination Simulator, see MSIS
Moon-first approach, 13 f.
MSIS, 32, 50

basic output, 115
classes, 79 ff.
date/time conversion algorithm, 90
definiton of inputs/outputs, 36
example usage, 94 f.
invocation, 92 ff.
KeplerOrbit class, 81
Program class, 79
rendering example, 51
Simulation class, 79 f.
soware architecture, 79 ff.
Spacecraft class, 80
spacecra position calculation, 84 ff.
SpacecraftState class, 80
state vector conversion, 87 ff.
Sun position calculation, 81–84
tools class, 80
user interface, 36, 92 ff.
XML meta information file, 116
XML pre-defined tags/aributes, 119–122

MSISF, 51 f., 103
components, 30 f.
deployment/installation, 38
development milestones, 30–33
development/test environment, 34 f.
file system layout, 37 f.
general concept, 29 f.
paern repository, 30
used soware/programming languages, 34 f.

My Indexed Sequential Access Method, see
MyISAM

My Structured ery Language, see MySQL
MyISAM, 53 f., 56
MySQL, 51–65

server configuration, 57
spatial extensions, 56

— N —

navigation technologies, 16 f.
near-Earth asteroids, 14 ff.

— O —

optical landing techniques, 17
optical navigation, 17, 24
orbit determination, 16
orbital elements

Earth’s orbital elements, 16
spacecra’s orbital elements, 16

— P —

paern generation, 71–74
CSV file, 73 f.
script, 72 ff.
triangulation function, 74

PDI, see Power Descent Initiate
PDS, 49 f.

required parameters, 49
Persistence of Vision Raytracer, see POV-Ray
Planetary Data System, see PDS

required parameters, 60
point cloud, 67
POV-Ray, 30, 32, 103

camera geometry, 105–108
file spliing, 71
mesh compilation, 74
mesh support, 68
scene description language (SDL), 70 f.
script, 74, 76
syntax (code snippet), 70 f.

Power Descent Initiate, 18

— Q —

quaternions, 97–101

195

Alphabetical Index

3D vector representation, 99
conjugate, 99
field axioms, 99
multiplication, 99
norm, 99
notation, 98
pure quaternions, 98
rotation quaternions, 99
unit quaternion, 99

— R —

R-tree, 56
ray tracing, 104 f.
real-time simulation, 20
reference frame(s), 16, 30, 39 f., 54, 97
rendering annotation, 80
rotation matrices, 97

— S —

selenographic coordinate system, 31
Selenological and Engineering Explorer, see

JAXA SELENE mission
Space Age, 13
space exploration, 13–17

international goals, 14 f.
key objectives and challenges, 15 f.

spacecra
orientation, 100 f.
orientation model, 97–101
rotation, 97–101

spatial rotation, 97–100
spherical coordinate system, 40–43
spherical polar coordinates, 42
SPICE, 81–84, 90
Sputnik 1, 13
state vectors, 84–89
surface illumination simulation, 24–27

surface paern, 71
anatomy, 67–71
storage, 74

— T —

terrain-relative navigation, 18, 24
active sensing approaches (figure), 25
active/passive sensing, 24–27
passive sensing approaches (figure), 26

Testbed for Robotic Optical Navigation, see
TRON

thesis’ objectives, 24–27
triangulated irregular networks, 32
TRN, see terrain-relative navigation
TRON, 17 f., 23

3D surface tile, 20
configuration, 18
laboratory, 19
schematic overview, 22
simulation(s), 20

— V —

vertex, see vertices
Vision for Space Exploration, 13
Voyager 1, 13

— X —

XML meta information file, 80

196

	Front Cover
	Front Matter
	Half Title
	Dedication
	Title
	Titel (German Title)
	Imprint
	Abstract
	Abstract (Deutsch)

	Main Content
	Table of Contents
	Preface
	List of Abbreviations
	Notation Overview
	1 Thesis Background and Scope
	1.1 Future Challenges of Space Exploration Missions
	1.2 Necessity of New Navigation Technologies
	1.3 Ambitions of the German Aerospace Center (DLR)
	1.4 Thesis' Contribution to Novel Navigation Systems

	2 Introducing the Moon Surface Illumination Simulation Framework (MSISF)
	2.1 General Concept
	2.2 Development Milestones
	2.2.1 Reference Frame and Selenographic Coordinates
	2.2.2 Lunar Topography Data Acquisition
	2.2.3 Database Creation, Data Import and Conditioning
	2.2.4 Surface Pattern Generation
	2.2.5 Surface Pattern Selection, Assembling and Rendering
	2.2.6 Output of the Local Solar Illumination Angle
	2.2.7 Result Discussion

	2.3 Preparatory Remarks
	2.3.1 Software and Programming Languages Used, Development Environment
	2.3.2 MSIS User Interface, Definition of Inputs and Outputs
	2.3.3 MSISF File System Layout
	2.3.4 MSISF Deployment and Installation

	3 Theoretical Foundations
	3.1 The Mean Earth/Polar Axis Reference Frame
	3.2 Derivation of a Spherical Coordinate System for the Moon

	4 Creating a Global Lunar Topographic Database
	4.1 Overview of Available Lunar Topographic Data
	4.2 Data from NASA's Lunar Orbiter Laser Altimeter (LOLA)
	4.3 LOLA Data Import and Conditioning
	4.3.1 Overall Concept
	4.3.2 MySQL Database Design, Query Optimization and Commitment of the MySQL Server Configuration to Database Performance
	4.3.3 Importing the LOLA Data into the MySQL Database

	5 Surface Pattern Generation Process
	5.1 Anatomy of a Surface Pattern
	5.2 Surface Pattern Generation Process
	5.3 Storage of the Surface Patterns and POV-Ray Mesh Compilation

	6 Moon Surface Illumination Simulator (MSIS)
	6.1 Software Architecture
	6.2 Selected Components of the MSIS
	6.2.1 Determination of the Sun's Position Using NASA NAIF SPICE
	6.2.2 Position Calculation Using a Set of Keplerian Orbit Elements
	6.2.3 State Vector Conversion to Keplerian Elements
	6.2.4 Time Calculations

	6.3 User Interface and MSIS Invocation
	6.3.1 General Information
	6.3.2 Batch File Operation Mode
	6.3.3 Fixed State Operation Mode
	6.3.4 Keplerian Elements Operation Mode
	6.3.5 State Vectors Operation Mode

	6.4 Example Usage

	7 Spacecraft Orientation and Rotation Model Using Quaternions
	7.1 Introduction to Quaternions and Spatial Rotation
	7.2 Spacecraft Orientation and Rotation Model

	8 Dynamical Surface Pattern Selection
	8.1 Ray Tracing with a Sphere
	8.2 Camera Geometry
	8.3 MSIS Implementation
	8.4 Drawbacks of this Method

	9 XML Meta Rendering Information and Rendering Annotations
	9.1 Definition of the MSIS Output
	9.2 Structure of the XML Meta Information File
	9.3 Determination of the Local Solar Illumination Angle

	10 Results, Discussion and Conclusion
	10.1 Synopsis of the Work Results
	10.2 Suggestions for Improvements and Future Work
	10.2.1 Performance Optimization
	10.2.2 Improvement of the Topography Database
	10.2.3 Graphical User Interface
	10.2.4 Rendering Parallelization/Distributed Rendering
	10.2.5 Utilization of the MSISF for Other Celestial Bodies
	10.2.6 Real-Time Video Preparation
	10.2.7 Compile POV-Ray as Windows Command-Line Tool
	10.2.8 INI Settings
	10.2.9 Original Implementation of the 2D Delaunay Triangulation
	10.2.10 Compensate the Drawbacks of the DSPSA

	10.3 Construction Progress of TRON
	10.4 MSISF Application at DLR

	Appendices
	A MSIS User Interface Specification
	B Code Listings
	B.1 MySQL Server Instance Configuration
	B.2 MSISRendering XML Document Type Definition (DTD)
	B.3 LDEM Import Script
	B.4 Pattern Generation Script

	Bibliography
	Astrodynamics/Celestial Mechanics
	Computer Vision (General)
	Illuminance Flow Estimation
	Mathematics/Physics in General, Numerical Analysis and Computational Science
	Scientific Tables/Conventions, Works of Reference, Algorithms
	Spacecraft Engineering
	Other Topics

	Listings
	List of Figures
	List of Tables
	List of Code Listings

	Alphabetical Index

	Back Cover

